Flukamec Plus Selenium Anthelmintic for Sheep

Virbac (Australia) Pty Limited

Chemwatch: 62-7955
Version No: 3.1.1.1
Safety Data Sheet according to WHS and ADG requirements

SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>Flukamec Plus Selenium Anthelmintic for Sheep</th>
</tr>
</thead>
<tbody>
<tr>
<td>Synonyms</td>
<td>APVMA No: 54108</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

<table>
<thead>
<tr>
<th>Relevant identified uses</th>
<th>Use according to manufacturer's directions.</th>
</tr>
</thead>
</table>

Details of the supplier of the safety data sheet

<table>
<thead>
<tr>
<th>Registered company name</th>
<th>Virbac (Australia) Pty Limited</th>
</tr>
</thead>
<tbody>
<tr>
<td>Address</td>
<td>361 Horsley Road Milperra NSW 2214 Australia</td>
</tr>
<tr>
<td>Telephone</td>
<td>1800 242 100</td>
</tr>
<tr>
<td>Fax</td>
<td>+61 2 9772 9773</td>
</tr>
<tr>
<td>Website</td>
<td>www.virbac.com.au</td>
</tr>
<tr>
<td>Email</td>
<td>au_customerservice@virbac.com.au</td>
</tr>
</tbody>
</table>

Emergency telephone number

<table>
<thead>
<tr>
<th>Association / Organisation</th>
<th>Poisons Information Centre</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emergency telephone numbers</td>
<td>13 11 26</td>
</tr>
<tr>
<td>Other emergency telephone numbers</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 2 HAZARDS IDENTIFICATION

Classification of the substance or mixture

<table>
<thead>
<tr>
<th>Poisons Schedule</th>
<th>96</th>
</tr>
</thead>
<tbody>
<tr>
<td>Classification [1]</td>
<td>Acute Toxicity (Oral) Category 4, Acute Toxicity (Inhalation) Category 4, Skin Sensitizer Category 1, Carcinogenicity Category 2</td>
</tr>
</tbody>
</table>

Legend:

Label elements

<table>
<thead>
<tr>
<th>Hazard pictogram(s)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SIGNAL WORD</td>
<td>WARNING</td>
</tr>
</tbody>
</table>

Hazard statement(s)

H302	Harmful if swallowed.
H332	Harmful if inhaled.
H317	May cause an allergic skin reaction.
H351	Suspected of causing cancer.

Precautionary statement(s) Prevention

P201	Obtain special instructions before use.
P271	Use only outdoors or in a well-ventilated area.
P280	Wear protective gloves/protective clothing/eye protection/face protection.
P281	Use personal protective equipment as required.
P261	Avoid breathing mist/vapours/spray.
P270	Do not eat, drink or smoke when using this product.

Continued...
Contaminated work clothing should not be allowed out of the workplace.

Precautionary statement(s): Response

P308+P313 IF exposed or concerned: Get medical advice/attention.
P363 Wash contaminated clothing before re-use.
P302+P352 IF ON SKIN: Wash with plenty of soap and water.
P333+P313 If skin irritation or rash occurs: Get medical advice/attention.
P301+P312 IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell.
P304+P340 IF INHALED: Remove victim to fresh air and keep at rest in a position comfortable for breathing.
P330 Rinse mouth.

Precautionary statement(s): Storage

P405 Store locked up.

Precautionary statement(s): Disposal

P501 Dispose of contents/container in accordance with local regulations.

SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS

Substances

See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% (weight)</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>68786-66-3</td>
<td><5</td>
<td>inclabendazole</td>
</tr>
<tr>
<td>100-51-6</td>
<td><1</td>
<td>benzyl alcohol</td>
</tr>
<tr>
<td>71751-41-2</td>
<td><1</td>
<td>abamectin</td>
</tr>
<tr>
<td>13410-01-0</td>
<td><1</td>
<td>sodium selenate, anhydrous</td>
</tr>
<tr>
<td>balance</td>
<td></td>
<td>Ingredients determined not to be hazardous</td>
</tr>
</tbody>
</table>

SECTION 4 FIRST AID MEASURES

Description of first aid measures

Eye Contact

If this product comes in contact with the eyes:

- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact

If skin contact occurs:

- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation

- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary.
- Transport to hospital, or doctor.

Ingestion

- IF SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY.
- For advice, contact a Poisons Information Centre or a doctor.
- Urgent hospital treatment is likely to be needed.
- In the meantime, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition.
- If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist.
- If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS.

Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed otherwise:

- INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- NOTE: Wear a protective glove when inducing vomiting by mechanical means.

Indication of any immediate medical attention and special treatment needed

For abamectin (avermectins):

Toxicity following accidental ingestion may be minimised by emesis-induction within one half hour of exposure. Since abamectin is thought to bind to glutamate-gated chloride ion channels, it is probably wise to avoid drugs that also interact with other ligand-gated chloride channels, including those that enhance GABA activity in patients with potentially toxic abamectin exposure.

Avoid drugs that enhance GABA activity (barbiturates, benzodiazepines, valproic acid, etc.).

Following exposures to chlorophenoxy compounds:

- Acute toxic reactions are rare. The by-product of production, dioxin, may be implicated in subacute features such as hepatic enlargement, chloracne, neuromuscular symptoms and deranged...
SECTION 5 FIREFIGHTING MEASURES

Extinguishing media
- There is no restriction on the type of extinguisher which may be used.
- Use extinguishing media suitable for surrounding area.

Special hazards arising from the substrate or mixture
- Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result.

Advice for firefighters

Fire Fighting
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves in the event of a fire.
- Prevent, by any means available, spillage from entering drains or water courses.
- Use fire fighting procedures suitable for surrounding area.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.
- Equipment should be thoroughly decontaminated after use.

Fire/Explosion Hazard
- Non combustible.
- Not considered to be a significant fire risk.
- Expansion or decomposition on heating may lead to violent rupture of containers.
- Decomposes on heating and may produce toxic fumes of carbon monoxide (CO).
- May emit acrid smoke.
- Decomposition may produce toxic fumes of:
 - carbon dioxide (CO2)
 - other pyrolysis products typical of burning organic material.
- May emit poisonous fumes.
- May emit corrosive fumes.

HAZCHEM
- Not Applicable

SECTION 6 ACCIDENTAL RELEASE MEASURES

Personal precautions, protective equipment and emergency procedures
- See section 8

Environmental precautions
- See section 12

Methods and material for containment and cleaning up

Minor Spills
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable, labelled container for waste disposal.

Major Spills
- Moderate hazard.
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
SECTION 7 HANDLING AND STORAGE

Precautions for safe handling

Safe handling

- DO NOT allow clothing wet with material to stay in contact with skin
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Avoid contact with moisture.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
- Observe manufacturer's storage and handling recommendations contained within this SDS.
- Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Other information

- Store in original containers.
- Keep containers securely sealed.
- Store in a cool, dry, well-ventilated area.
- Store away from incompatible materials and foodstuff containers.
- Protect containers against physical damage and check regularly for leaks.
- Observe manufacturer's storage and handling recommendations contained within this SDS.

Conditions for safe storage, including any incompatibilities

Suitable container

- Polyethylene or polypropylene container.
- Packing as recommended by manufacturer.
- Check all containers are clearly labelled and free from leaks.

Storage incompatibility

- Avoid reaction with oxidising agents

SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

<table>
<thead>
<tr>
<th>INGREDIENT DATA</th>
<th>Ingredient</th>
<th>Material name</th>
<th>TWA</th>
<th>STEL</th>
<th>Peak</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Source</td>
<td>sodium selenate, anhydrous</td>
<td>Selenium compounds (as Se) excluding hydrogen selenide</td>
<td>0.1 mg/m³</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

EMERGENCY LIMITS

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Material name</th>
<th>TEEL-1</th>
<th>TEEL-2</th>
<th>TEEL-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>benzyl alcohol</td>
<td>Benzyl alcohol</td>
<td>30 ppm</td>
<td>52 ppm</td>
<td>740 ppm</td>
</tr>
<tr>
<td>sodium selenate, anhydrous</td>
<td>Sodium selenate; (Disodium selenate)</td>
<td>1.4 mg/m³</td>
<td>1.6 mg/m³</td>
<td>2 mg/m³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Original IDLH</th>
<th>Revised IDLH</th>
</tr>
</thead>
<tbody>
<tr>
<td>triclabendazole</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>benzyl alcohol</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>abamectin</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>sodium selenate, anhydrous</td>
<td>1 mg/m³</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

MATERIAL DATA

Exposure controls

Appropriate engineering controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.
- Employers may need to use multiple types of controls to prevent employee overexposure.
- Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection.
- Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection.
- An approved self contained breathing apparatus (SCBA) may be required in some situations.
- Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant.

Personal Protective Equipment advice is contained in Section 8 of the SDS.
Within each range the appropriate value depends on:

<table>
<thead>
<tr>
<th>Air Speed:</th>
<th>0.25-0.5 m/s (50-100 f/min.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5-1 m/s (100-200 f/min.)</td>
<td></td>
</tr>
<tr>
<td>1-2.5 m/s (200-500 f/min.)</td>
<td></td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min.) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Personal protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Eye and face protection

- Wear safety footwear or safety gumboots, e.g. Rubber
- Chemical goggles.
- Chemical protective gloves, e.g. PVC.
- Contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent]

Skin protection

- See Hand protection below

Hands/feet protection

- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 0.5 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential

Body protection

- See Other protection below

Type of Contaminant:

- solvent, vapours, degreasing etc., evaporating from tank (in still air).
- aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)
- direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion)
- grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion)

List of Contaminants and Air Speed:

- Type of Contaminant: Air Speed:
- solvent, vapours, degreasing etc., evaporating from tank (in still air): 0.25-0.5 m/s (50-100 f/min.)
- aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation): 0.5-1 m/s (100-200 f/min.)
- direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid air motion): 1-2.5 m/s (200-500 f/min.)
- grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion): 2.5-10 m/s (500-2000 f/min.)
Other protection

- Overalls.
- PVC apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Thermal hazards

Not Available

Recommended material(s)

GLOVE SELECTION INDEX

Glove selection is based on a modified presentation of the

"Forsberg Clothing Performance Index".

The effect(s) of the following substance(s) are taken into account in the computer-generated selection:

Flukamec Plus Selenium Anthelmintic for Sheep

<table>
<thead>
<tr>
<th>Material</th>
<th>CPI</th>
</tr>
</thead>
<tbody>
<tr>
<td>BUTYL</td>
<td>C</td>
</tr>
<tr>
<td>VITON</td>
<td>C</td>
</tr>
</tbody>
</table>

* CPI - Chemwatch Performance Index
A: Best Selection
B: Satisfactory; may degrade after 4 hours continuous immersion
C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation. * - Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

Respiratory protection

Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent)

Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required. Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.

<table>
<thead>
<tr>
<th>Required Minimum Protection Factor</th>
<th>Half-Face Respirator</th>
<th>Full-Face Respirator</th>
<th>Powered Air Respirator</th>
</tr>
</thead>
<tbody>
<tr>
<td>up to 10 x ES</td>
<td>A-AUS</td>
<td>-</td>
<td>A-PAPR-AUS / Class 1</td>
</tr>
<tr>
<td>up to 50 x ES</td>
<td>-</td>
<td>A-AUS / Class 1</td>
<td>-</td>
</tr>
<tr>
<td>up to 100 x ES</td>
<td>-</td>
<td>A-2</td>
<td>A-PAPR-2 ^</td>
</tr>
</tbody>
</table>

^ - Full face
A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC)

Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate.

SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Liquid</td>
</tr>
<tr>
<td>Physical state</td>
<td>Liquid</td>
</tr>
<tr>
<td>Relative density (Water = 1)</td>
<td>1.05-1.15</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Partition coefficient n-octanol / water</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>Auto-ignition temperature (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Decomposition temperature</td>
<td>Not Available</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Viscosity (cSt)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Molecular weight (g/mol)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flash point (°C)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Taste</td>
<td>Not Available</td>
</tr>
<tr>
<td>Evaporation rate</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Flammability</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Flammability</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Oxidising properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Surface Tension (dyn/cm or mN/m)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Volatile Component (%vol)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Gas group</td>
<td>Not Available</td>
</tr>
<tr>
<td>Solubility in water (g/L)</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH as a solution (1%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Available</td>
</tr>
<tr>
<td>VOC g/L</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 10 STABILITY AND REACTIVITY

Reactivity

See section 7

Chemical stability

- Unstable in the presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

Possibility of hazardous reactions

See section 7

Conditions to avoid

See section 7

Incompatible materials

See section 7

Hazardous decomposition products

See section 5
SECTION 11 TOXICOLOGICAL INFORMATION

Information on toxicological effects

<table>
<thead>
<tr>
<th>Route</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inhaled</td>
<td>Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be harmful. The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation of vapours, fumes or aerosol, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress.</td>
</tr>
<tr>
<td>Ingestion</td>
<td>Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Ingestion may result in nausea, abdominal irritation, pain and vomiting.</td>
</tr>
<tr>
<td>Skin Contact</td>
<td>The material is not thought to be a skin irritant (i.e. is unlikely to produce irritant dermatitis as described in EC Directives using animal models). Temporary discomfort, however, may result from prolonged dermal exposures. Good hygiene practice requires that exposure be kept to a minimum and that suitable gloves be used in an occupational setting. Skin contact with the material may damage the health of the individual; systemic effects may result following absorption. Open cuts, abraded or irritated skin should not be exposed to this material. Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected.</td>
</tr>
<tr>
<td>Eye</td>
<td>Limited evidence exists, or practical experience suggests, that the material may cause eye irritation in a substantial number of individuals and is expected to produce significant ocular lesions which are present twenty-four hours or more after instillation into the eyes) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur.</td>
</tr>
</tbody>
</table>

TOXICITY IRRITATION

<table>
<thead>
<tr>
<th>Flukamec Plus Selenium Anthelmintic for Sheep</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>triclabendazole</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>dermal (rat) LD50: >4000 mg/kg[^2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) LC50: >0.5 mg/l[4][^2]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: >8000 mg/kg[^2]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

[^2]: Additional data provided for reference.
For chlorophenoxy pesticides: 551chp

WARNING: This substance has been classified by the IARC as Group 2B: Possibly Carcinogenic to Humans.

Side-reactions during manufacture of the parent compound may result in the production of trace amounts of polyhalogenated aromatic hydrocarbon(s). Halogenated phenols, and especially their alkali salts, can condense above 300 deg. C. to form polychlorophenols or, in a very specific reaction, to form dibenzo-p-dioxins

Polyhalogenated aromatic hydrocarbons (PHAHs) comprise two major groups. The first group represented by the halogenated derivatives of dibenzodioxins (the chlorinated form is PCBs), dibenzofurans (PCDF) and biphenyls (PCB) exert their toxic effect (as hepatocarcinogens, reproductive toxicants, immunotoxicants and carcinogens) by interaction with a cytoplasmic protein known as the Ah receptor. In guinea pigs the Ah receptor is active in a mechanism which "pumps" PHAH into the cell whilst in humans the reverse appears to true. This, in part, may account for species differences often cited in the literature. This receptor exhibits an affinity for the planar members of this group and carries these to the cellular nucleus where they bind, reversibly, to specific genomes on DNA. This results in the regulation of the production of certain proteins which elicit the toxic response. The potency of the effect is dependent on the strength of the original interaction with the Ah receptor and is influenced by the degree of substitution by the halogen and the position of such substitutions on the parent compound.

The most potent molecule is 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) while the coplanar PCBs (including mono-ortho coplanars) possess approximately 1% of this potency. Nevertheless, all are said to exhibit "dioxin-like" behaviour and in environmental and health assessments it has been the practice to assign each a TCDD-equivalence value.

The most subtle and important biological effects of the PHAHs are the effects on endocrine hormones and vitamin homeostasis. TCDD mimics the effect of thyroxin (a key metamorphosis signal during maturation) and may disrupt patterns of embryonic development at critical stages. Individuals from exposed wildlife populations have been observed to have altered sexual development, sexual dysfunction as adults and immune system suppression. Immunotoxic mortality in males and a three-fold excess in women.

Recent findings from Seveso indicate that the biological effects of low level exposure (BELLES), experienced by a cohort located at a great distance from the plant, may be hormetic, i.e. may be protective AGAINST the development of cancer. The PHAHs do not appear to be genotoxic - they do not alter the integrity of DNA. This contrasts with the effects of the many polycyclic aromatic hydrocarbons (PAHs) (or more properly, their reactive metabolites). TCDD induces carcinogenic effects in the laboratory in all species, strains and sexes tested. These effects are dose-related and occur in many organs.

Exposures as low as 0.001 ug/kg body weight/day produce carcinoma. Several studies implicate PCBs in the development of liver cancer in workers as well as multi-site cancers in animals. The second major group of PHAH consists of the non-planar PCB congeners which possess two or more ortho-substituted halogens. These have been shown to produce neurotoxic effects which are thought to reduce the concentration of the brain neurotransmitter, dopamine, by inhibiting certain enzyme-mediated processes. The specific effect elicited by both classes of PHAH seems to depend on the as much on the development of the organism at the time of the exposure as on the level of exposure over a lifetime.

NOTE: Some jurisdictions require that health surveillance be conducted on workers occupationally exposed to polycyclic aromatic hydrocarbons. Such surveillance should emphasise

- demography, occupational and medical history
- health advice, including recognition of photosensitivity and skin changes
- physical examination if indicated
- records of personal exposure including photosensitivity

Foetotoxicity recorded. * Transchem MSDS

<table>
<thead>
<tr>
<th>Substance</th>
<th>Toxicity</th>
<th>Irritation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal (rabbit) LD50: 2000 mg/kg</td>
<td>Eye (rabbit): 0.75 mg open SEVERE</td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) LC50: >4.178 mg/l/4h</td>
<td>Skin (man): 16 mg/48h-mild</td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: 1320 mg/kg</td>
<td>Skin (rabbit): 10 mg/24h-open-mild</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substance</th>
<th>Toxicity</th>
<th>Irritation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermal (rat) LD50: >330 mg/kg</td>
<td>Eye (rabbit): slight *</td>
<td></td>
</tr>
<tr>
<td>Inhalation (rat) LC50: 1.1 mg/l/4h</td>
<td>Skin (rabbit): non irritating*</td>
<td></td>
</tr>
<tr>
<td>Oral (rat) LD50: 1.5 mg/kg</td>
<td>Not Available</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Substance</th>
<th>Toxicity</th>
<th>Irritation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral (rat) LD50: 1.6 mg/kg</td>
<td>Not Available</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2. Value obtained from manufacturer's SDS. Unless otherwise specified

data extracted from RTECS - Register of Toxic Effect of chemical Substances

TRICLABENDAZOLE

Three incidences have occurred which have introduced abnormally high levels of dioxin or dioxin-like congeners to humans. The explosion at a trichlorophenol-manufacturing plant in Seveso, Italy distributed TCDD across a large area of the country-side, whilst rice-oil contaminated with heat-transfer PCBs (and dioxin-like contaminants) has been consumed by two groups, on separate occasions (one in Yusho, Japan and another in Yu-cheng, Taiwan). The only symptom which can unequivocally be related to all these exposures is the development of chloracne, a disfiguring skin condition, following each incident. Contaminated oil poisonings also produced eye-discharge, swelling of eyelids and visual disturbances. The Babies born up to 3 years after maternal exposure (so-called "Yusho-babies") were characteristically brown skinned, coloured gums and nails and (frequently) produced eye-discharges. Delays in intellectual development have been noted. It has been estimated that Yu-cheng patients consumed an average level of 0.06 mg/kg body weight/day total PCB and 0.0002 mg/kg/day of PCDF before the onset of symptoms after 3 months. When the oil was withdrawn after 6 months they had consumed 1 gm total PCB containing 3.8 mg PCDF. Taiwanaese patients consumed 10 times as much contaminated oil as the Japanese patients (because of later withdrawal); however since PCB/PCDF concentration in the Japanese oil was 10 times that consumed in Taiwan, patients from both countries consumed about the same amount of PCBs/PCDFs. Preliminary data from the Yusho cohort suggests a six-fold excess of liver cancer mortality in males and a three-fold excess in women.

Recent findings from Seveso indicate that the biological effects of low level exposure (BELLES), experienced by a cohort located at a great distance from the plant, may be hormetic, i.e. may be protective AGAINST the development of cancer. The PHAHs do not appear to be genotoxic - they do not alter the integrity of DNA. This contrasts with the effects of the many polycyclic aromatic hydrocarbons (PAHs) (or more properly, their reactive metabolites). TCDD induces carcinogenic effects in the laboratory in all species, strains and sexes tested. These effects are dose-related and occur in many organs.

Exposures as low as 0.001 ug/kg body weight/day produce carcinoma. Several studies implicate PCBs in the development of liver cancer in workers as well as multi-site cancers in animals. The second major group of PHAH consists of the non-planar PCB congeners which possess two or more ortho-substituted halogens. These have been shown to produce neurotoxic effects which are thought to reduce the concentration of the brain neurotransmitter, dopamine, by inhibiting certain enzyme-mediated processes. The specific effect elicited by both classes of PHAH seems to depend on the as much on the development of the organism at the time of the exposure as on the level of exposure over a lifetime.

NOTE: Some jurisdictions require that health surveillance be conducted on workers occupationally exposed to polycyclic aromatic hydrocarbons. Such surveillance should emphasise

- demography, occupational and medical history
- health advice, including recognition of photosensitivity and skin changes
- physical examination if indicated
- records of personal exposure including photosensitivity

Foetotoxicity recorded. * Transchem MSDS
The following information refers to contact allergens as a group and may not be specific to this product.

Contact allergies quickly manifest themselves as contact eczema, more rarely as urticaria or Quincke’s oedema. The pathogenesis of contact eczema involves a cell-mediated (T lymphocytes) immune reaction of the delayed type. Other allergic skin reactions, e.g. contact urticaria, involve antibody-mediated immune reactions. The intrinsic or intrinsic significance of the contact allergen is not simply determined by the substance and the opportunities for contact with it are equally important. A weakly sensitising substance which is widely distributed can be a more important allergen than one with stronger sensitising potential with which few individuals come into contact. From a clinical point of view, substances are noteworthy if they produce an allergic test reaction in more than 1% of the persons tested.

Benzyl alcohol

Unlike benzylic alcohols, the beta-hydroxyl group of the members of this cluster is unlikely to undergo phase II metabolic activation. Instead, the beta-hydroxyl group is expected to contribute to detoxification via oxidation to hydrophilic acid. Despite structural similarity to carcinogenic ethyl benzoate, only a marginal concern has been assigned to phenyl alcohol due to limited mechanistic analogy.

For benzenes:

Acute toxicity: Benzyl alcohol, benzoic acid and its sodium and potassium salt can be considered as a single category regarding human health, as they are all rapidly metabolised and excreted via a common pathway within 24 hrs. Systemic toxic effects of similar nature (e.g. liver, kidney) were observed. However with benzoic acid and its salts toxic effects are seen at higher doses than with benzyl alcohol.

The compounds exhibit non-reprotoxicity for benzyl alcohol (LD50 acute value as oral or dermal route. The LD50 acute value as oral or dermal route. The LD50 acute value for benzyl alcohol is higher than 5000 mg/kg bw except for benzyl alcohol which needs to be considered as harmful by oral route in an oral LD50 of 1610 mg/kg bw. The 4 hrs inhalation exposure of benzoic acid or benzaldehyde at 4 and 12 mg/l as aerosol/dust respectively gave no mortality, showing low acute toxicity by inhalation for these compounds.

Benzyl alcohol and benzaldehyde are slightly irritating to the skin, while sodium benzoate was not skin irritating. No data are available for potassium benzoate but it is also expected not to be skin irritating. Benzonic acid and benzaldehyde are irritating to the eye and sodium benzoate was only slightly irritating to the eye. No data are available for potassium benzoate but it is expected also to be only slightly irritating to the eye.

Sensitisation: The available studies for benzoic acid gave no indication for a sensitising effect in animals, however occasionally very low positive reactions were recorded with humans (dermatological patients) in patch tests. The same occurs for sodium benzoate. It has been suggested that the very low positive reactions are non-immunologic contact urticaria. Benzyl alcohol gave positive and negative results in animals. Benzyl alcohol also demonstrated a maximum incidence of sensitization of only 1% in human patch testing. Over several decades no sensitisation with these compounds has been seen among workers.

Repeat dose toxicity: For benzyl alcohol repeated dose oral toxicity studies give a NOAEL of 800 mg/kg/day. For the salts values >1000 mg/kg/day are obtained. At higher doses increased mortality, reduced weight gain, liver and kidney effects were observed.

For benzyl alcohol the long-term studies indicate a NOAEL > 400 mg/kg bw for rats and > 200 mg/kg bw for mice. At higher doses on bodyweights, lesions in the brain, thymus, skeletal muscle and kidney were observed. It should be taken into account that administration in these studies was by gavage route, at which saturation of metabolic pathways is likely to occur.

Mutagenicity: All chemicals showed no mutagenic activity in various Ames tests. Various results were obtained with other in vitro genotoxicity assays. Sodium benzoate and benzyl alcohol showed no genotoxicity in vivo. While some mixed and/or equivocal in vivo chromosomal/cytogenetic responses have been observed, no genotoxicity was observed in the in vitro cytogenetic, micronucleus, or other assays. The weight of the evidence of the in vivo and in vitro genotoxicity data indicates that these chemicals are not mutagenic or clastogenic. They also are not carcinogenic in long-term carcinogenicity studies.

In a 4-generation study with benzyl alcohol no effects on reproduction were seen (NOAEL: 750 mg/kg). No compound related effects on reproductive organs (gross and histopathology examination) could be found in the (sub) chronic studies in rats and mice with benzyl acetate, benzoic acid, benzaldehyde, sodium benzoate and supports a non-reprotoxic potential of these compounds in addition, data from reproductive studies on benzyl acetate (NOAEL >2000 mg/kg bw; rats and mice) and benzaldehyde (tested only up to 5 mg/kg bw; rats) support the non-reprotoxicity of benzyl alcohol and benzoic acid and its salts.

Developmental toxicity: In rats for sodium benzoate dosed via food during the entire gestational development effects occurred only in the presence of maternal toxicity (reduced food intake and decreased body weight) (NOAEL = 1400 mg/kg). For hamster (NOEL: 300 mg/kg bw), rabbit (NOEL: 250 mg/kg bw) and mice (CD-1 mice, NOEL: 175 mg/kg.) no higher doses (all by gavage) were tested and no maternal toxicity was observed.

For benzyl alcohol: NOAEL = 550 mg/kg bw (gavage; CD-1 mice). LOAEL = 750 mg/kg bw (gavage mice). In this study maternal toxicity was observed e.g. increased mortality, reduced body weight and clinical toxicology. Benzyl alcohol: NOEL = 500 mg/kg bw (gavage rats). No maternal toxicity was observed.

Adverse reactions to fragrances in perfumes and in fragranced cosmetic products include allergic contact dermatitis, irritant contact dermatitis, photosensitivity, immediate contact reactions (contact urticaria), and pigmented contact dermatitis. Airborne and connubial contact dermatitis occur. Sensitisation: When people are exposed. A significant relationship between hand eczema and fragrance contact allergy has been found in some studies based on patients investigated for contact allergy. However, hand eczema is a multi-factorial disease and the clinical significance of fragrance contact allergy in severe chronic hand eczema may not be clear.

Allergic contact dermatitis: Frustration allergy may be a relevant problem in patients with hand eczema; perfumes are present in consumer products to which their hands are exposed. A significant relationship between hand eczema and fragrance contact allergy has been found in some studies based on patients investigated for contact allergy. However, hand eczema is a multi-factorial disease and the clinical significance of fragrance contact allergy in severe chronic hand eczema may not be clear.

Benzyl alcohol allergy: Benzyl alcohol allergy can occur in those already sensitised, is an important objective of public health risk management measure.

Hands: Contact sensitisation to fragrances, both in terms of primary prevention (avoiding sensitisation) and secondary prevention (avoiding relapses of allergic contact sensitisation to fragrances) in those already sensitised, is an important objective of public health risk management measure.

Facial eczema: Facial eczema is an important manifestation of fragrance allergy from the use of cosmetic products (16). In men, after-shave products can cause an exerescent eruption of the beard area and the adjacent part of the neck and men using wet shaving as opposed to dry have been shown to have an occasional sensitisation to these products.

Sensitisation: The available studies for benzoic acid gave no indication for a sensitising effect in animals, however occasionally very low positive reactions were recorded with humans (dermatological patients) in patch tests. The same occurs for sodium benzoate. It has been suggested that the very low positive reactions are non-immunologic contact urticaria. Benzyl alcohol gave positive and negative results in animals. Benzyl alcohol also demonstrated a maximum incidence of sensitization of only 1% in human patch testing. Over several decades no sensitisation with these compounds has been seen among workers.

Repeat dose toxicity: For benzyl alcohol repeated dose oral toxicity studies give a NOAEL of 800 mg/kg/day. For the salts values >1000 mg/kg/day are obtained. At higher doses increased mortality, reduced weight gain, liver and kidney effects were observed.

For benzyl alcohol the long-term studies indicate a NOAEL > 400 mg/kg bw for rats and > 200 mg/kg bw for mice. At higher doses on bodyweights, lesions in the brain, thymus, skeletal muscle and kidney were observed. It should be taken into account that administration in these studies was by gavage route, at which saturation of metabolic pathways is likely to occur.

Mutagenicity: All chemicals showed no mutagenic activity in various Ames tests. Various results were obtained with other in vitro genotoxicity assays. Sodium benzoate and benzyl alcohol showed no genotoxicity in vivo. While some mixed and/or equivocal in vivo chromosomal/cytogenetic responses have been observed, no genotoxicity was observed in the in vitro cytogenetic, micronucleus, or other assays. The weight of the evidence of the in vivo and in vitro genotoxicity data indicates that these chemicals are not mutagenic or clastogenic. They also are not carcinogenic in long-term carcinogenicity studies.

In a 4-generation study with benzyl alcohol no effects on reproduction were seen (NOAEL: 750 mg/kg). No compound related effects on reproductive organs (gross and histopathology examination) could be found in the (sub) chronic studies in rats and mice with benzyl acetate, benzoic acid, benzaldehyde, sodium benzoate and supports a non-reprotoxic potential of these compounds in addition, data from reproductive studies on benzyl acetate (NOAEL >2000 mg/kg bw; rats and mice) and benzaldehyde (tested only up to 5 mg/kg bw; rats) support the non-reprotoxicity of benzyl alcohol and benzoic acid and its salts.

Developmental toxicity: In rats for sodium benzoate dosed via food during the entire gestational development effects occurred only in the presence of maternal toxicity (reduced food intake and decreased body weight) (NOAEL = 1400 mg/kg). For hamster (NOEL: 300 mg/kg bw), rabbit (NOEL: 250 mg/kg bw) and mice (CD-1 mice, NOEL: 175 mg/kg.) no higher doses (all by gavage) were tested and no maternal toxicity was observed. For benzyl alcohol: NOAEL = 550 mg/kg bw (gavage; CD-1 mice). LOAEL = 750 mg/kg bw (gavage mice). In this study maternal toxicity was observed e.g. increased mortality, reduced body weight and clinical toxicology. Benzyl alcohol: NOEL = 500 mg/kg bw (gavage rats). No maternal toxicity was observed.

Adverse reactions to fragrances in perfumes and in fragranced cosmetic products include allergic contact dermatitis, irritant contact dermatitis, photosensitivity, immediate contact reactions (contact urticaria), and pigmented contact dermatitis. Airborne and connubial contact dermatitis occur. Sensitisation: When people are exposed. A significant relationship between hand eczema and fragrance contact allergy has been found in some studies based on patients investigated for contact allergy. However, hand eczema is a multi-factorial disease and the clinical significance of fragrance contact allergy in severe chronic hand eczema may not be clear.

Benzyl alcohol allergy: Benzyl alcohol allergy can occur in those already sensitised, is an important objective of public health risk management measure.

Hands: Contact sensitisation to fragrances, both in terms of primary prevention (avoiding sensitisation) and secondary prevention (avoiding relapses of allergic contact sensitisation to fragrances) in those already sensitised, is an important objective of public health risk management measure.

Facial eczema: Facial eczema is an important manifestation of fragrance allergy from the use of cosmetic products (16). In men, after-shave products can cause an exerescent eruption of the beard area and the adjacent part of the neck and men using wet shaving as opposed to dry have been shown to have an occasional sensitisation to these products.
increased risk of being fragrance allergic.

Irritant reactions (including contact urticaria): Irritant effects of some individual fragrance ingredients, e.g. citral are known. Irritant contact dermatitis from perfumes is believed to be common, but there are no existing investigations to substantiate this. Many more people complain about intolerance or rash to perfumes/perfumed products than are shown to be allergic by testing. Preparations of irritant effects or inadequate diagnostic procedures. Fragrances may cause a dose-related contact urticaria of the non-immunological type (irritant contact urticaria). Cinnamal, cinnamic alcohol, and Myroxylon pereirae are well recognised causes of contact urticaria, but others, including menthol, vanillin and benzaldehyde have also been reported. The reactions to Myroxylon pereirae may be due to cinnamates. A relationship to delayed contact hypersensitivity was suggested, but no significant difference was found between a fragrance-allergic group and a control group in the frequency of immediate reactions to fragrance ingredients in keeping with a nonimmunological basis for the reactions seen.

Pigmentary anomalies: The term "pigmented cosmetic dermatitis" was introduced in 1973 for what had previously been known as melasma faciei medicamentosa when the mechanism (type IV allergy) and causative allergens were clarified. It is referred to increased pigmentation, usually on the face, often followed sub-clinical contact dermatitis. Many cosmetic ingredients were patch tested at this time. Although it occurs in use, it is also seen in consequence of treatment (proven) in some plant-derived fragrance ingredients caused phototoxic reactions with erythema followed by hyperpigmentation resulting in Belique dermatitis. There are now limits for the amount of furcocamatain in fragrance products. Phototoxic reactions still occur but are rare.

Components/respiratory: Fragrances are volatile and therefore, in addition to skin exposure, a perfume also exposes the eyes and naso-respiratory tract. It is estimated that 2-4% of the adult population is affected by respiratory or eye symptoms by such an exposure. It is known that exposure to fragrances may exacerbate pre-existing asthma. Asthma-like symptoms can be provoked by sensory mechanisms. In an epidemiological investigation, a significant association was found between respiratory complaints related to fragrances and contact allergy to fragrance ingredients, in addition to hand eczema, which were independent risk factors in a multivariate analysis.

Fragrance allergens act as hapten(s), i.e. low molecular weight chemicals that are immunogenic only when attached to a carrier protein. However, not all sensitising fragrance chemicals are directly reactive, but require previous activation. A hapten is a chemical that itself is non- or low-sensitising, but that is transformed into a hapten outside the skin by simple chemical transformation (air oxidation, photodegradation) and without the requirement of specific enzymatic systems. A hapten is a chemical that itself is non- or low-sensitising (beautification) usually via enzyme catalysis. It is not always possible to know whether a particular allergen that is not directly reactive acts as a prehapten or as a prohapten, or both, because air oxidation and biocatalysis can often give the same product (geraniol is an example). Some chemicals might act by all three pathways.

Prohaptns

Compounds that are biocatalysed in the skin and thereby form haptenes are referred to as prohaptns. In the case of prohaptns, the possibility to become activated is inherent to the molecule and activation cannot be avoided by extrinsic mechanisms. Activation processes increase the risk for cross-reactivity between fragrance substances. Crossreactivity has been shown for certain alcohols and their corresponding aldehydes, i.e. between geraniol and geraniol (citral) and between cinnamyl alcohol and cinnamal.

The human skin expresses enzyme systems that are able to metabolise xenobiotics, modifying their chemical structure to increase hydrophilicity and allow elimination from the body. Xenobiotic metabolism can be divided into two phases: phase I and phase II. Phase I transformations are known as activation or functionalisation reactions, which normally introduce or remak hydrophilic functional groups. If the metabolites are sufficiently polar at this point they will be eliminated. However, many phase I products have to undergo subsequent phase II transformations, i.e. conjugation to make them sufficiently water soluble to be eliminated. Although it is the purpose of xenobiotic metabolism is detoxification, it can also convert relatively harmless compounds into reactive species. Cutaneous enzymes that catalyse phase I transformations include the cytochrome P450 mixed-function oxidase system, alcohol and aldehyde dehydrogenases, monoamine oxidases, flavin-containing monooxygenases and hydrolytic enzymes. Acyltransferases, glutathione S-transferases, UDP-glucuronyltransferases and sulfotransferases are examples of phase II enzymes that have been shown to be present in human skin. These enzyme systems are known to catalyse both activating and deactivating biotransformations, but the influence of the reactions on the allergenic activity of skin sensitisers has not been studied in detail. Skin sensitising prohaptns can be recognised and grouped into chemical classes based on knowledge of xenobiotic bioactivation reactions, clinical observations and/or in vivo and in vitro studies of sensitisation potential and chemical reactivity.

QSAR prediction: The relationships between molecular structure and reactivity that form the basis for structural alerts are based on well-established principles of mechanistic organic chemistry. Examples of structural alerts are aliphatic aldehydes (alerting to the possibility of sensitisation via a Schiff base reaction with protein amino groups), and alpha,beta-unsaturated carbonyl groups, C=CCO- (alerting to the possibility of sensitisation via Michael addition of protein thiol groups). Prediction of the sensitisation potential of compounds that can act via abiotic or metabolic activation (pre- or prohaptns) is more complex compared to that of compounds that act as direct haptenes without any activation. The oxidation pattern can differ due to differences in the stability of the intermediates formed, e.g. it has been shown that autoxidation of the structural isomers linool and geraniol results in different major haptenes/allergens. Moreover, the complexity of the prediction increases further for those compounds that can act both as pre- and prohaptns. In such cases, the impact on the sensitisation potency depends on the degree of abiotic activation (e.g. autoxidation) in relation to the metabolic activation. The material may cause a flare-up and may irritate after prolonged or repeated exposure. This form of dermatitis is often characterised by skin redness (erythema) and swelling the epidermis. Histologically there may be intercellular oedema of the spongios layer (spongiosis) and intracellular oedema of the epidermis.

A member or analogue of a group of benzyl derivatives generally regarded as safe (GRAS) based on part in their self-limiting properties as flavouring substances in food; their rapid absorption, metabolic detoxification, and excretion in humans and other animals, their low level of flavour use, the wide margin of safety between the conservative estimates of intake and the no-observed-adverse effect levels determined from chronic and subchronic studies and the lack of significant genotoxic and mutagenic potential. This evidence of safety is supported by the fact that the intake of benzyl derivatives as natural components of traditional foods is greater than the intake as intentionally added flavoured substances.

All members of this group are aromatic primary alcohols, aldehydes, carboxylic acids or their corresponding esters or acetals. The substances in this group:

- contain a benzene ring substituted with a reactive primary oxygenated functional group or can be hydrolysed to such a functional group
- the major pathway of metabolic detoxification involves hydration and oxidation to yield the corresponding benzoic acid derivate which is excreted either as the free acid or the glycine conjugate
- they show a consistent pattern of toxicity in both short- and long-term studies and
- they exhibit no evidence of genotoxicity in standardised batteries of in vitro and in vivo assays.

The benzyl derivatives are rapidly absorbed through the gut, metabolised primarily in the liver, and excreted in the urine as glycine conjugates of benzoic acid derivatives. In general, aromatic esters are hydrolysed in vivo through the catalytic activity of carboxylesterases, the most important of which are the A-esterases.

Hydrolysis of benzyl and benzoic esters to yield corresponding alcohols and carboxylic acids and hydrolysis of acetals to yield benzaldehyde and simple alcohols has been reported in several experiments.

The alcohols and aldehydes are rapidly oxidised to benzoic acid while benzoate esters are hydrolysed to benzoic acid.

Flavor and Extract Manufacturers Association (FEMA)

The aryl alkyl alcohols (AAA) fragrance ingredients are a diverse group of chemical structures with similar metabolic and toxicity profiles. The A-AAA fragrances demonstrate low acute and subchronic dermal and oral toxicity. At concentrations likely to be encountered by consumers, AAA fragrance ingredients are non-irritating to the skin.

The potential for eye irritation is minimal.

With the exception of benzyl alcohol and to a lesser extent phenethyl and 2-phenoxeyethyl AAA alcohols, human sensitisation studies, diagnostic patch tests and human induction studies, indicate that AAA fragrance ingredients generally have no or low sensitization potential. Available data indicate that the potential for photosensitisation is low.

NOAELs for maternal and developmental toxicity are far in excess of current human exposure levels. No carcinogenicity in rats of benzyl alcohol was observed in 2-year chronic testing of benzyl alcohol; the latter did induce species and gender-specific renal adenomas in male rats at the high dose. There was no to little genotoxicity, mutagenicity, or clastogenicity in the mutagenicity in vitro bacterial assays, and in vitro mammalian cell assays. All in vivo microuconaseus assays were negative. It is concluded that these materials would not present a safety concern at current levels of use as fragrance ingredients.

The Research Institute for Fragrance Materials (RIFM) Expert Panel
No significant acute toxicological data identified in literature search.

For avermectins:

Technical avermectin exhibits high mammalian acute toxicity. It is not considered to be mutagenic and does not sensitise skin. It is not readily absorbed by mammals and the majority of the residue is excreted in the faeces within 2 days. The 24-month rat chronic feeding/oncogenicity study and 94-week mouse chronic toxicity oncogenicity study were negative for oncogenic potential. The results of a series of developmental toxicity studies (rat, rabbit, mouse) have been evaluated and showed that avermectin B1 produces developmental toxicity (cleft palate) in the CF1 mouse. Toxicology data were also evaluated for the delta-8,9-isomer of avermectin B1 which is a plant photodegrade that can range between 5 and 20 percent of the residue on cottonseed. This isomer possesses avermectin-like toxicological activity. It was concluded that the delta 8,9-isomer also produces developmental toxicity (cleft palate) in mice, but not in rats. In addition to avermectin and its delta 8,9-isomer, toxicity data were also evaluated for the "polar degradates" of avermectin, which constitute a large percentage (up to 70%) of the total residue on cottonseed. Review of the toxicology data indicated that these polar degradates do not possess avermectin-like toxicological activity and for this reason need not be included in the tolerance expression for residues on cottonseed.

Abamectin (a mixture of avermectin isomers) is a reproductive toxin in laboratory animals at doses which are acutely toxic to the mother. In development toxicity studies with abamectin, cleft palates were seen in mice and rats and clubbing of the forepaws was seen in rats. The no-observed-adverse effect-level (NOAEL) for maternal and developmental toxicity in rabbits was 1 mg/kg/day. In CF-1 mice, a strain recognised to be particularly sensitive to avermectins, the NOAEL for maternal toxicity was 0.05 mg/kg/day and the NOAEL for malformations was 0.2 mg/kg/day. Studies show that the sensitivity of a subpopulation of CF-1 mice to avermectins is due to the absence of a transmembrane P-glycoprotein, a significant component of the blood-brain interface that normally acts as a non-selective protective barrier in a wide range of species including humans. CF-1 mice are therefore an unlikely candidate for assessing human risk. No evidence of developmental toxicity was seen in oral studies in rats in the absence of maternal toxicity (NOAEL = 1.6 mg/kg/day). In a rat multigenerational reproduction study, pup toxicity and deaths were seen at 0.4 mg/kg/day (NOAEL = 0.12 mg/kg/day). Neonatal rats are not an appropriate model for assessing human risk in humans because (a) rat milk has a greater fat content than human breast milk and abamectin concentrates in fat; (b) on a weight basis, the neonatal rat consumes significantly greater quantities of milk than the newborn human and (c) the blood brain barrier in rodents is formed post-natally (as evidenced by low P-glycoprotein levels) while in humans this membrane is formed pre-natally.

Ivermectin, a close structural analogue, has been used extensively in the treatment of onchocerciasis at an oral therapeutic dose of 0.2 mg/kg, without serious drug-related effects. Despite its wide usage in animals and humans, ivermectin does not appear to produce birth defects. Abamectin is non-mutagenic in the Ames test and the micronucleus test. Dietary carcinogenicity studies in mice and rats showed negative results. In a 14-week oral study in monkeys no effects were seen at 0.2, 0.5 or 1.0 mg/kg/day; emesis was seen at 2.0 mg/kg/day; delayed pupillary obstruction at 6 and 8 mg/kg/day and mydriasis at 12 mg/kg/day. In chronic oral toxicity, abamectin produced decreased body weight gain in mice (no-observed-adverse-effect-level (NOAEL) > 1.5 mg/kg/day); tremors in rats (NOAEL > 1.5 mg/kg/day), weight loss, tremors, mydriasis, liver and gall bladder changes and death in dogs (NOAEL = 0.25 mg/kg/day); and emesis, mydriasis and oedema in monkeys (NOAEL = 1 mg/kg/day). Oral (rat) LD₅₀: 8.7-12.8 mg/kg (14 day) * ADI: 0.0001 mg/kg Toxicity Class EPA IV Non-mutagenic in the Ames test ADI: 0.4 mg/day * [Manufactured] Convolusions recorded.

SODIUM SELENATE, ANHYDROUS

The substance is classified by IARC as Group 3: NOT classifiable as to its carcinogenicity to humans. Evidence of carcinogenicity may be inadequate or limited in animal testing. Eye effects, general anaesthesia, convulsions, muscle weakness, spasticity, cardiac EKG changes, cyanosis, lung tumours, diarrhoea, impaired liver function tests, leuanaemia, specific developmental changes, effects on newborn recorded.

SECTON 12 ECOLOGICAL INFORMATION

Toxicity

<table>
<thead>
<tr>
<th>Substance</th>
<th>ENDPOINT</th>
<th>TEST DURATION (HR)</th>
<th>SPECIES</th>
<th>VALUE</th>
<th>SOURCE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flukamec Plus Selenium Anthelmintic for Sheep</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>triclabendazole</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
<tr>
<td>abamectin</td>
<td>LC₅₀ 96</td>
<td>Fish</td>
<td>10mg/L</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>sodium selenate, anhydrous</td>
<td>EC₅₀ 96</td>
<td>Algae or other aquatic plants</td>
<td>7.3096mg/L</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>LC₅₀ 96</td>
<td>Fish</td>
<td>0.69mg/L</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EC₅₀ 48</td>
<td>Crustacea</td>
<td>0.083mg/L</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EC₅₀ 96</td>
<td>Algae or other aquatic plants</td>
<td>0.199mg/L</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>BCF 336</td>
<td>Algae or other aquatic plants</td>
<td>10mg/L</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>NOEC 168</td>
<td>Algae or other aquatic plants</td>
<td>0.0091mg/L</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>
for chlorophenoxy herbicides:

Environmental fate:

Residues of chlorophenoxy herbicides in the environment are the consequence of the direct application of these compounds to agricultural and non-agricultural areas. Biodegradation is the primary route of elimination from the environment; photolysis and hydrolysis also contribute to their removal.

The chlorophenoxy herbicides are considered to have only marginal potential for leaching to groundwater. In basic waters, phenoxy herbicide esters are hydrolysed to the anionic forms; in acidic waters, photodegradation or vaporisation predominates, depending on the ester.

Chlorophenoxy herbicides may be transported in the atmosphere in the form of droplets, vapour, or powder following application by spraying. Chlorophenoxy herbicides may be present in food as a result of their direct application to crops; however, concentrations are normally low.

The group of acidic herbicides, including the phenoxy acids, possess functional groups that ionise in aqueous systems yielding pKa values of less than 4. The behaviour of these materials is closely correlated with their acid character. The most significant factor with respect to soil mobility is the organic content of the soil which readily absorbs these compounds. Furthermore in acidic systems these compounds are also absorbed by clay particles. The esters and ethers are expected to behave differently from the acid forms although hydrolysis may influence subsequent binding. In general the esters and ethers are considered non-persistent in the environment.

DO NOT discharge into sewer or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>benzyl alcohol</td>
<td>LOW</td>
<td>LOW</td>
</tr>
<tr>
<td>sodium selenate, anhydrous</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>benzyl alcohol</td>
<td>LOW (LogKOW = 1.1)</td>
</tr>
<tr>
<td>sodium selenate, anhydrous</td>
<td>LOW (LogKOW = -3.1818)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>benzyl alcohol</td>
<td>LOW (KOC = 15.66)</td>
</tr>
<tr>
<td>sodium selenate, anhydrous</td>
<td>LOW (KOC = 48.64)</td>
</tr>
</tbody>
</table>

SECTION 13 DISPOSAL CONSIDERATIONS

Waste treatment methods

- Containers may still present a chemical hazard/danger when empty.
- Return to supplier for reuse/recycling if possible. Otherwise:
 - If container cannot be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be reused to store the same product, then puncture containers, to prevent re-use, and bury at an authorized landfill.
 - Where possible retain label warnings and SDS and observe all notices pertaining to the product.

Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible.
- Consult manufacturer for recycling options or consult local or regional waste management authority for disposal if no suitable treatment or disposal facility can be identified.
- Dispose of by: burial in a land-fill specifically licensed to accept chemical and/or pharmaceutical wastes or incineration in a licensed apparatus (after admixture with suitable combustible material).
- Decontaminate empty containers. Observe all label safeguards until containers are cleaned and destroyed.

SECTION 14 TRANSPORT INFORMATION

Labels Required

- Marine Pollutant: NO
- HAZCHEM: Not Applicable

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code
SECTION 15 REGULATORY INFORMATION

Safety, health and environmental regulations / legislation specific for the substance or mixture

TRICLABENDAZOLE (68786-66-3) IS FOUND ON THE FOLLOWING REGULATORY LISTS
- Australia Hazardous Substances Information System - Consolidated Lists
- Australia Inventory of Chemical Substances (AICS)

BENZYL ALCOHOL (100-51-6) IS FOUND ON THE FOLLOWING REGULATORY LISTS
- Australia Hazardous Substances Information System - Consolidated Lists
- Australia Inventory of Chemical Substances (AICS)

ABAMECTIN (71751-41-2) IS FOUND ON THE FOLLOWING REGULATORY LISTS
- Australia Hazardous Substances Information System - Consolidated Lists

SODIUM Selenate, Anhydrous (13410-01-0) IS FOUND ON THE FOLLOWING REGULATORY LISTS
- Australia Exposure Standards
- Australia Hazardous Substances Information System - Consolidated Lists
- International Agency for Research on Cancer (IARC) - Agents Classified by the IARC Monographs

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
<th>Ingredients</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AICS</td>
<td>N</td>
<td>abamectin</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>N</td>
<td>abamectin; triclabendazole</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>N</td>
<td>benzyl alcohol; abamectin; triclabendazole; sodium selenate, anhydrous</td>
</tr>
<tr>
<td>China - IECSC</td>
<td>N</td>
<td>abamectin; triclabendazole</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>N</td>
<td>abamectin; triclabendazole</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>N</td>
<td>abamectin; triclabendazole</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>N</td>
<td>triclabendazole</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>N</td>
<td>abamectin; triclabendazole</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>N</td>
<td>abamectin; triclabendazole</td>
</tr>
</tbody>
</table>

Legend:
- **Y** = All ingredients are on the inventory
- **N** = Not determined or one or more ingredients are not on the inventory and are not exempt from listing (see specific ingredients in brackets)

SECTION 16 OTHER INFORMATION

Other information

Ingredients with multiple cas numbers

<table>
<thead>
<tr>
<th>Name</th>
<th>CAS No</th>
</tr>
</thead>
<tbody>
<tr>
<td>abamectin</td>
<td>71751-41-2, 86753-29-9</td>
</tr>
</tbody>
</table>

Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations

- PC – TWA: Permissible Concentration - Time Weighted Average
- PC – STEL: Permissible Concentration - Short Term Exposure Limit
- IARC: International Agency for Research on Cancer
- ACGIH: American Conference of Governmental Industrial Hygienists
- STEL: Short Term Exposure Limit
- TEL: Temporary Emergency Exposure Limit
- IDLH: Immediately Dangerous to Life or Health Concentrations
- OSF: Odour Safety Factor
- NOAEL: No Observed Adverse Effect Level
- LOAEL: Lowest Observed Adverse Effect Level
- TLV: Threshold Limit Value
- LOD: Limit Of Detection
- OTV: Odour Threshold Value
- BCF: BioConcentration Factors
- BEI: Biological Exposure Index

This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH.

TEL (+61 3) 9572 4700.