SECTION 1 Identification of the substance / mixture and of the company / undertaking

Product Identifier

<table>
<thead>
<tr>
<th>Product name</th>
<th>Aseptol Germicide, Disinfectant and Detergent (Aseptol Germicide, Disinfectant and Detergent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chemical Name</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Synonyms</td>
<td>APVMA No.: 30193</td>
</tr>
<tr>
<td>Chemical formula</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Other means of identification</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Relevant identified uses of the substance or mixture and uses advised against

Relevant identified uses: Use diluted for cleaning and disinfecting farm premises and cuts on animals.

Details of the supplier of the safety data sheet

Registered company name: Virbac (Australia) Pty Limited
Address: 361 Horsley Road Milperra NSW 2214 Australia
Telephone: 1800 242 100
Fax: +61 2 9772 9773
Website: au.virbac.com
Email: au_customerservice@virbac.com.au

Emergency telephone number

Association / Organisation: Poisons Information Centre
Emergency telephone numbers: 13 11 26
Other emergency telephone numbers: Not Available

SECTION 2 Hazards identification

Classification of the substance or mixture

Poisons Schedule: Not Applicable
Classification [1]: Hazardous to the Aquatic Environment Acute Hazard Category 3, Hazardous to the Aquatic Environment Long-Term Hazard Category 3, Serious Eye Damage/Eye Irritation Category 2A

Label elements

Hazard pictogram(s)

Signal word: Warning

Hazard statement(s)

H412 Harmful to aquatic life with long lasting effects.
H319 Causes serious eye irritation.

Precautionary statement(s)

Prevention

P273 Avoid release to the environment.
P280 Wear protective gloves, protective clothing, eye protection and face protection.
P264 Wash all exposed external body areas thoroughly after handling.
Precautionary statement(s) Response
P305+P351+P338 IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing.
P337+P313 If eye irritation persists: Get medical advice/attention.

Precautionary statement(s) Storage
Not Applicable

Precautionary statement(s) Disposal
P501 Dispose of contents/container to authorised hazardous or special waste collection point in accordance with any local regulation.

SECTION 3 Composition / information on ingredients

Substances
See section below for composition of Mixtures

Mixtures

<table>
<thead>
<tr>
<th>CAS No</th>
<th>% [weight]</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>57-09-0</td>
<td>0.75</td>
<td>cetyltrimethylammonium bromide</td>
</tr>
<tr>
<td>55-56-1</td>
<td>0.75</td>
<td>chlorhexidine</td>
</tr>
<tr>
<td>64-17-5</td>
<td>10-20</td>
<td>ethanol</td>
</tr>
<tr>
<td>Not Available</td>
<td>1-10</td>
<td>Ingredients determined not to be hazardous</td>
</tr>
<tr>
<td>7732-18-5</td>
<td>>60</td>
<td>water</td>
</tr>
</tbody>
</table>

Legend:

SECTION 4 First aid measures

Description of first aid measures

Eye Contact
If this product comes in contact with the eyes:
- Wash out immediately with fresh running water.
- Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids.
- Seek medical attention without delay; if pain persists or recurs seek medical attention.
- Removal of contact lenses after an eye injury should only be undertaken by skilled personnel.

Skin Contact
If skin contact occurs:
- Immediately remove all contaminated clothing, including footwear.
- Flush skin and hair with running water (and soap if available).
- Seek medical attention in event of irritation.

Inhalation
- If fumes or combustion products are inhaled remove from contaminated area.
- Lay patient down. Keep warm and rested.
- Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures.
- Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained.
- Perform CPR if necessary.
- Transport to hospital, or doctor.

Ingestion
- If swallowed do NOT induce vomiting.
- If vomiting occurs, lean patient forward or place on left side (head-down position, if possible) to maintain open airway and prevent aspiration.
- Observe the patient carefully.
- Never give liquid to a person showing signs of being sleepy or with reduced awareness; i.e. becoming unconscious.
- Give water to rinse out mouth, then provide liquid slowly and as much as casualty can comfortably drink.
- Seek medical advice.

Indication of any immediate medical attention and special treatment needed

Treat symptomatically.
Suggested treatment regime for biguanide intoxication:
- Establish airway and assist ventilation with positive end expiratory pressure, if required, after endotracheal intubation. Circulatory competence must be maintained - monitor blood pressure carefully.
- Induction of emesis with ipecac may be contraindicated as a result of biguanide-induced gastric mucosal irritation.
- Gastric lavage, following endotracheal intubation may be preferred. Activated charcoal and cathartics placed through the lavage tube may be useful.
- Forcing fluids may be counterproductive and result in fluid overload.
- Haemodialysis may be useful as, in addition to facilitating the removal of biguanide and excess lactate, it permits the administration of adequate amounts of sodium bicarbonate without the risk of fluid overload or hypernatraemia.
- Hypoglycaemia can be treated immediately with 50 ml of 50% glucose intravenously in adults or 0.5 g/kg per dose in children.
- Acidosis may be treated with IV sodium bicarbonate (1-2 mEq/kg); doses of 44-50 mEq every 15 minutes may be required. Ensure that arterial blood gases, serum sodium chloride, potassium and ECG are monitored. The patient may require 500-600 mEq of sodium bicarbonate.
- Dehydration and hypovolaemia may require placement of a central venous line.
- Hypotension may be treated by placing the patient in Trendelenburg's position and the cautious use of IV fluids. Pressor amines should be used cautiously, with blood lactate monitoring, as they may increase lactic acid production.

ELLENHORN and BARCELOUX: Medical Toxicology; Diagnosis and Treatment of Human Poisoning. 1988

SECTION 5 Firefighting measures

Extinguishing media
The product contains a substantial proportion of water, therefore there are no restrictions on the type of extinguishing media which may be used. Choice of extinguishing media should take into account surrounding areas.
Though the material is non-combustible, evaporation of water from the mixture, caused by the heat of nearby fire, may produce floating layers of combustible substances.
In such an event consider:
- foam.
- dry chemical powder.
- carbon dioxide.

Special hazards arising from the substrate or mixture

<table>
<thead>
<tr>
<th>Fire Incompatibility</th>
<th>None known.</th>
</tr>
</thead>
</table>

Advice for firefighters

Fire Fighting
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear full body protective clothing with breathing apparatus.
- Prevent, by any means available, spillage from entering drains or water course.
- Use water delivered as a fine spray to control fire and cool adjacent area.
- Avoid spraying water onto liquid pools.
- DO NOT approach containers suspected to be hot.
- Cool fire exposed containers with water spray from a protected location.
- If safe to do so, remove containers from path of fire.

Fire/Explosion Hazard
- Combustion products include:
 - carbon dioxide (CO2)
 - other pyrolysis products typical of burning organic material.
- May emit poisonous fumes.
- May emit corrosive fumes.
- The material is not readily combustible under normal conditions.
- However, it will break down under fire conditions and the organic component may burn.
- Not considered to be a significant fire risk.
- Heat may cause expansion or decomposition with violent rupture of containers.
- Decomposes on heating and may produce toxic fumes of carbon monoxide (CO).
- May emit acrid smoke.

<table>
<thead>
<tr>
<th>HAZCHEM</th>
<th>Not Applicable</th>
</tr>
</thead>
</table>

SECTION 6 Accidental release measures

Personal precautions, protective equipment and emergency procedures

See section 8

Environmental precautions

See section 12

Methods and material for containment and cleaning up

Minor Spills
- Remove all ignition sources.
- Clean up all spills immediately.
- Avoid breathing vapours and contact with skin and eyes.
- Control personal contact with the substance, by using protective equipment.
- Contain and absorb spill with sand, earth, inert material or vermiculite.
- Wipe up.
- Place in a suitable, labelled container for waste disposal.

Major Spills
- Moderate hazard.
- Clear area of personnel and move upwind.
- Alert Fire Brigade and tell them location and nature of hazard.
- Wear breathing apparatus plus protective gloves.
- Prevent, by any means available, spillage from entering drains or water course.
- No smoking, naked lights or ignition sources.
- Increase ventilation.
- Stop leak if safe to do so.
- Contain spill with sand, earth or vermiculite.
- Collect recoverable product into labelled containers for recycling.
- Absorb remaining product with sand, earth or vermiculite.
- Collect solid residues and seal in labelled drums for disposal.
- Wash area and prevent runoff into drains.
- If contamination of drains or waterways occurs, advise emergency services.

Personal Protective Equipment advice is contained in Section 8 of the SDS.

SECTION 7 Handling and storage

Precautions for safe handling

Safe handling
- DO NOT allow clothing wet with material to stay in contact with skin.
- Avoid all personal contact, including inhalation.
- Wear protective clothing when risk of exposure occurs.
- Use in a well-ventilated area.
- Prevent concentration in hollows and sumps.
- DO NOT enter confined spaces until atmosphere has been checked.
- DO NOT allow material to contact humans, exposed food or food utensils.
- Avoid contact with incompatible materials.
- When handling, DO NOT eat, drink or smoke.
- Keep containers securely sealed when not in use.
- Avoid physical damage to containers.
- Always wash hands with soap and water after handling.
- Work clothes should be laundered separately. Launder contaminated clothing before re-use.
- Use good occupational work practice.
Avoid oxidising agents, acids, acid chlorides, acid anhydrides, chloroformates.

14 mg/m³

Occupational exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical’s potency and the
3,300 ppm

Not Available

Ingredient
Ethanol

Peak
Not Available

Not Available

TEEL-2
Not Available

1.2 mg/m³

Original IDLH
Revised IDLH
TEEL-3
81 mg/m³

TWA
Not Available

C

Occupational Exposure Band Rating
> 0.1 to ≤ milligrams per cubic meter of air (mg/m³)

Not Available

≤ 0.01 mg/m³

Air Speed:
0.25-0.5 m/s (50-100 f/min.)

0.5-1 m/s (100-200 f/min.)

1-2.5 m/s (200-500 f/min.)

2.5-10 m/s (500-2000 f/min.)

MATERIAL DATA

Exposure controls

Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are:

- Process controls which involve changing the way a job activity or process is done to reduce the risk.
- Enclosure and/or isolation of emission source which keeps a selected hazard “physically” away from the worker and ventilation that strategically “adds” and “removes” air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use.
- Employers may need to use multiple types of controls to prevent employee overexposure.

Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations.

Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying “escape” velocities which, in turn, determine the “capture velocities” of fresh circulating air required to effectively remove the contaminant.

Type of Contaminant:

- solvent, vapours, degreasing etc., evaporating from tank (in still air).
- aerosols, fumes from pouring operations, intermittent container filling, low speed conveyor transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation)
- direct spray, spray painting in shallow booths, drum filling, conveyor loading, crusher dusts, gas discharge (active generation into zone of rapid motion)
- grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion).

Within each range the appropriate value depends on:

Not Available

Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions are maintained.

Store in original containers.

Keep containers securely sealed.

No smoking, naked lights or ignition sources.

Store in a cool, dry, well-ventilated area.

Store away from incompatible materials and foodstuff containers.

Protect containers against physical damage and check regularly for leaks.

Observe manufacturer's storage and handling recommendations contained within this SDS.

Other information

Conditions for safe storage, including any incompatibilities

Suitable container

Metal can or drum

Packaging as recommended by manufacturer.

Check all containers are clearly labelled and free from leaks.

Storage incompatibility

Avoid oxidising agents, acids, acid chlorides, acid anhydrides, chloroformates.

SECTION 8 Exposure controls / personal protection

Control parameters

OCCUPATIONAL EXPOSURE LIMITS (OEL)

INGREDIENT DATA

Source
Australia Exposure Standards

Ingredient
Ethanol

Material name
Ethyl alcohol

TWA
1000 ppm / 1880 mg/m³

STEL
Not Available

Peak
Not Available

Notes
Not Available

Emergency Limits

Ingredient
Cetyltrimethylammonium bromide

TEEL-1
1.2 mg/m³

TEEL-2
14 mg/m³

TEEL-3
81 mg/m³

Occupational Exposure Banding

Ingredient
Cetyltrimethylammonium bromide

OCCUPATIONAL EXPOSURE BAND LIMIT

OCCUPATIONAL EXPOSURE BAND RATING

Notes:
Occasional exposure banding is a process of assigning chemicals into specific categories or bands based on a chemical's potency and the adverse health outcomes associated with exposure. The output of this process is an occupational exposure band (OEB), which corresponds to a range of exposure concentrations that are expected to protect worker health.

 MATERIAL DATA

Exposure controls

Appropriate engineering controls

Continued...
Personal protection

<table>
<thead>
<tr>
<th>Lower end of the range</th>
<th>Upper end of the range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1: Room air currents minimal or favourable to capture</td>
<td>1: Disturbing room air currents</td>
</tr>
<tr>
<td>2: Contaminants of low toxicity or of nuisance value only.</td>
<td>2: Contaminants of high toxicity</td>
</tr>
<tr>
<td>3: Intermittent, low production.</td>
<td>3: High production, heavy use</td>
</tr>
<tr>
<td>4: Large hood or large air mass in motion</td>
<td>4: Small hood-local control only</td>
</tr>
</tbody>
</table>

Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used.

Eye and face protection

- Safety glasses with side shields.
- Chemical goggles.
- Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59]. [AS/NZS 1336 or national equivalent]

Skin protection

See Hand protection below

- Wear chemical protective gloves, e.g. PVC.
- Wear safety footwear or safety gumboots, e.g. Rubber

The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application. The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice.

Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include:
- Frequency and duration of contact,
- Chemical resistance of glove material,
- Glove thickness and porosity,
- Dexterity.

Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent).
- When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended.
- Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term use.
- Contaminated gloves should be replaced.

As defined in ASTM F-739-96 in any application, gloves are rated as:
- Excellent when breakthrough time > 480 min
- Good when breakthrough time > 20 min
- Fair when breakthrough time < 20 min
- Poor when glove material degrades.

For general applications, gloves with a thickness typically greater than 0.35 mm, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times.

Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturer’s technical data should always be taken into account to ensure selection of the most appropriate glove for the task.

Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example:
- Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of.
- Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential.

Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended.

Hands/feet protection

- Overalls.
- P.V.C apron.
- Barrier cream.
- Skin cleansing cream.
- Eye wash unit.

Other protection

- Respiratory protection
 - Where the concentration of gas/particulates in the breathing zone, approaches or exceeds the "Exposure Standard" (or ES), respiratory protection is required.
 - Degree of protection varies with both face-piece and Class of filter; the nature of protection varies with Type of filter.
Detergent)
Material CPI
BUTYL A
NEOPRENE A
NATURAL RUBBER C
NATURAL+NEOPRENE C
NITRILE C
NITRILE+PVC C
PE/EVAL/PE C
PVA C
PVC C
VITON C

* CPI - Chemwatch Performance Index
A: Best Selection
B: Satisfactory; may degrade after 4 hours continuous immersion
C: Poor to Dangerous Choice for other than short term immersion

NOTE: As a series of factors will influence the actual performance of the glove, a final selection must be based on detailed observation.

* Where the glove is to be used on a short term, casual or infrequent basis, factors such as "feel" or convenience (e.g. disposability), may dictate a choice of gloves which might otherwise be unsuitable following long-term or frequent use. A qualified practitioner should be consulted.

SECTION 9 Physical and chemical properties

Information on basic physical and chemical properties

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appearance</td>
<td>Red liquid with a mild odour; mixes with water.</td>
</tr>
<tr>
<td>Physical state</td>
<td>Liquid</td>
</tr>
<tr>
<td>Relative density (Water = 1)</td>
<td>0.95</td>
</tr>
<tr>
<td>Odour</td>
<td>Not Available</td>
</tr>
<tr>
<td>Odour threshold</td>
<td>Not Available</td>
</tr>
<tr>
<td>pH (as supplied)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Melting point / freezing point (°C)</td>
<td>0 approx.</td>
</tr>
<tr>
<td>Initial boiling point and boiling range (°C)</td>
<td>83 approx.</td>
</tr>
<tr>
<td>Viscosity (cSt)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Molecular weight (g/mol)</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Taste</td>
<td>Not Available</td>
</tr>
<tr>
<td>Explosive properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Oxidising properties</td>
<td>Not Available</td>
</tr>
<tr>
<td>Upper Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Lower Explosive Limit (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour pressure (kPa)</td>
<td><1</td>
</tr>
<tr>
<td>Solubility in water</td>
<td>Miscible</td>
</tr>
<tr>
<td>pH as a solution (%)</td>
<td>Not Available</td>
</tr>
<tr>
<td>Vapour density (Air = 1)</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 10 Stability and reactivity

Reactivity
See section 7

Chemical stability
- Unstable in the presence of incompatible materials.
- Product is considered stable.
- Hazardous polymerisation will not occur.

Possibility of hazardous reactions
See section 7

Conditions to avoid
See section 7

Incompatible materials
See section 7

Hazardous decomposition products
See section 5

SECTION 11 Toxicological information

Information on toxicological effects

Inhaled
Inhalation of vapours may cause drowsiness and dizziness. This may be accompanied by narcosis, reduced alertness, loss of reflexes, lack of coordination and vertigo.

Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual.
Limited evidence or practical experience suggests that the material may produce irritation of the respiratory system, in a significant number of individuals, following inhalation. In contrast to most organs, the lung is able to respond to a chemical insult by first removing or neutralising the irritant and then repairing the damage. The repair process, which initially evolved to protect mammalian lungs from foreign matter and antigens, may however, produce further lung damage resulting in the impairment of gas exchange, the primary function of the lungs. Respiratory tract irritation often results in an inflammatory response involving the recruitment and activation of many cell types, mainly derived from the vascular system.

The most common signs of inhalation overexposure to ethanol, in animals, include ataxia, incoordination and drowsiness for those surviving narcosis. The narcotic dose for rats, after 2 hours of exposure, is 15290 ppm.

Accidental ingestion of the material may be damaging to the health of the individual. Biguanide have been used in the oral management of mild to moderately severe stable, non-insulin-dependent (type II) diabetes mellitus in patients who are usually over 40 years old and who are obese, and may often have an adult onset of their illness. The administration of oral hypoglycaemic drugs has been reported to be associated with increased cardiovascular mortality as compared to treatment with diet alone or diet plus insulin.

Phenformin, previously marketed as an oral hypoglycaemic agent in the USA, was removed from approval of use because of its association with the development of lactic acidosis, a metabolic aberration resulting in mortality rates of between 50% and 70%. Ethanol intake prior to or concomitant with the ingestion of phenformin in therapeutic or excessive dosage appears to predispose the patient to the development of lactic acidosis with potentially serious outcomes. Modification of the basic biguanide structure results in differences in potency, metabolism, excretion and probably toxicity. Adverse effects of overexposure to the biguanides may include absent corneal reflexes and fixed dilated pupils, nausea, vomiting, diarrhoea, abdominal cramps, anorexia, weight loss, epigastric discomfort and pain, haematemesis (blood in the vomit), agitation, confusion, lethargy, seizures, extensor plantar reflexes, coma, rapid, deep respiration and pulmonary hypertension; death may ensue. Cardiovascular involvement may result in tachycardia, hypotension, and myocardial infarction. The skin may become dry and hot and the patient may become dehydrated. The biguanides exert their physiological effects by a similar basic mechanism; they induce an increase in peripheral glucose utilisation, a decrease in hepatic glucoseogenesis and a decrease in the intestinal absorption of glucose, Vitamin B12 and bile acids. Biguanides do not usually lower the blood sugar of healthy individuals unless ethanol or other hypoglycaemic agents are ingested simultaneously. Lactic acidosis may follow the action of the biguanides on cell membranes to reduce oxidative phosphorylation and thus to produce tissue anoxia with increased peripheral glucose uptake.

Evidence exists, or practical experience predicts, that the material may cause eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage ulceration may occur.

Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There is evidence that human exposure to the material may result in developmental toxicity. This evidence is based on animal studies where effects have been observed in the absence of marked maternal toxicity, or at around the same dose levels as other toxic effects but which are not secondary non-specific consequences of the other toxic effects.

Long-term exposure to ethanol may result in progressive liver damage with fibrosis or may exacerbate liver injury caused by other agents. Repeated ingestion of ethanol by pregnant women may adversely affect the central nervous system of the developing foetus, producing effects collectively described as foetal alcohol syndrome. These include mental and physical retardation, learning disturbances, motor and language deficiency, behavioural disorders and reduced head size.

Consumption of ethanol (in alcoholic beverages) may be linked to the development of Type I hypersensitivities in a small number of individuals. Symptoms, which may appear immediately after consumption, include conjunctivitis, angioedema, dyspnœa, and urticarial rashes. The causative agent may be acetic acid, a metabolite (1).

(1) Boehncke W.H., & H.Gall, Clinical & Experimental Allergy, 26, 1089-1091, 1996

Chronic intoxication with ionic bromides, historically, has resulted from medical use of bromides but not from environmental or occupational exposure. Depression, hallucinosis, and schizophreniform psychosis can be seen in the absence of other signs of intoxication. Bromides may also induce sedation, irritability, agitation, delirium, memory loss, confusion, disorientation, forgetfulness (aphasias), dysarthria, weakness, fatigue, vertigo, stupor, coma, decreased appetite, nausea and vomiting, diarrhoea, hallucinations, an acne like rash on the face, legs and trunk, known as bronchodema (seen in 25-30% of case involving bromide ion), and a profuse discharge from the nostrils (coryza). Ataxia and generalised hyperreflexia have also been observed. Correlation of neurologic symptoms with blood levels of bromide is inexact. The use of substances such as brompheniramine, as antihistamines, largely reflect current day usage of bromides; ionic bromides have been largely withdrawn from therapeutic use due to their toxicity.

In test animals, brominated vegetable oils (BVOs), historically used as emulsifiers in certain soda-based soft drinks, produced damage to the heart and kidneys in addition to increasing fat deposits in these organs. In extreme cases BVO caused testicular damage, stunted growth and produced lethargy and fatigue.

Bromism produces slurred speech, apathy, headache, decreased memory, anorexia and drowsiness, psychosis resembling paranoid schizophrenia, and personality changes.

Several cases of foetal abnormalities have been described in mothers who took large doses of bromides during pregnancy. Reproductive effects caused by bromide (which crosses the placenta) include central nervous system depression, bromism, and bronchodema in the newborn.

<table>
<thead>
<tr>
<th>Aseptol Germicide, Disinfectant and Detergent (Aseptol Germicide, Disinfectant and Detergent)</th>
<th>TOXICITY</th>
<th>IRRITATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>cetyltrimethylammonium bromide</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOXICITY</td>
</tr>
<tr>
<td>Dermal (rabbit) LD50: 4300 mg/kg</td>
</tr>
<tr>
<td>Oral(Rat) LD50: >1550 mg/kg</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>chlorhexidine</th>
</tr>
</thead>
<tbody>
<tr>
<td>TOXICITY</td>
</tr>
<tr>
<td>Dermal (rabbit) LD50: >2815 mg/kg</td>
</tr>
<tr>
<td>Oral(Mouse) LD50: 2515 mg/kg</td>
</tr>
</tbody>
</table>
For alkyltrimethylammonium chloride (ATMAC), most undiluted cationic surfactants satisfy the criteria for classification as Harmful (Xn) with R22 and as Irritant (Xi) for skin and eyes with R38 and R41. In addition, certain surfactants will satisfy the criteria for classification as Corrosive with R34 in addition to the acute toxicity. According to Centre Europeen des Agents de Surface et de leurs Intermediaires Organiques (CESIO), C8-18 alkyltrimethylammonium chloride (ATMAC) (i.e., lauryl-, C12 of 15) are classified as Corrosive (C-) with the toxic phrases R22 (Harmful if swallowed) and R34 (Causes burns). C16 ATMAC is classified as Harmful (Xn) with the risk phrases R22 (Harmful if swallowed), R38 (Irritating to skin), and R41 (Risk of serious damage to eyes). C20-22 ATMAC are classified as Irritant (Xi) with R36/38 (Irritating to eyes and skin).

Mutagenicity: The few available absorption studies conducted with cationic surfactants indicate that absorption occurs in small amounts through the skin and rectum. A repeated insult patch test of C16 ATMAC was conducted with 114 volunteers. Seventeen days after the last induction of 0.25% C16 ATMAC in 2% ethanol (applied to an 8 cm2 area with occlusion) in the rat, the rat was not irritable to rabbit skin in a concentration of 2.5%. The surfactant was applied to intact and abraded sites and scored after 4 hours. Then the skin was rinsed and then scored again after 48 hours. The erythema and Eschar Index was 3.75 (maximum 4) and the edema Index was 2.0 (maximum 4).

Toxicokinetics and Acute Toxicity: The few available absorption studies conducted with cationic surfactants indicate that absorption occurs in small amounts through the skin and rectum. A repeated insult patch test of C16 ATMAC was conducted with 114 volunteers. Seventeen days after the last induction of 0.25% C16 ATMAC in 2% ethanol (applied to an 8 cm2 area with occlusion) in the rat, the rat was not irritable to rabbit skin in a concentration of 2.5%. The surfactant was applied to intact and abraded sites and scored after 4 hours. Then the skin was rinsed and then scored again after 48 hours. The erythema and Eschar Index was 3.75 (maximum 4) and the edema Index was 2.0 (maximum 4).

With regard to eye irritation, cationic surfactants are the most irritating of the surfactants. The longer chained alkyltrimethylammonium salts are less irritating to the rabbit eye than the shorter alkyl chain homologues. C10 ATMAC, C12 ATMAC, and C16 ATMAC were tested in concentrations of 0.1% and 1.0% in water and were found to be significantly irritating to the rabbit eye. A 5% solution of C18 ATMAC was instilled into the eyes of guinea pigs, and this concentration was very irritating with a total PI (The Primary Irritation Index) score of 96 (maximum 110). A homologous series of ATMAC produced very little swelling of the stratum corneum and some homologues produced a shrinkage of the stratum corneum after prolonged exposure.

Many proteins in the skin are considerably more resistant to the denaturing effects of cationic surfactants compared to those of anionic surfactants. As cationic surfactants frequently have a lower critical micelle concentration than the anionic surfactants, a saturation of the surfactant/protein complex is prevented by the formation of micelles. Compared to a representative anionic surfactant, the cooperative binding with subsequent protein denaturation requires about a tenfold higher concentration of a cationic surfactant. Contrary to the irreversible denaturing effect of sodium dodecyl sulfate, the adverse effects of some cationic surfactants on proteins may be reversible. Cationic surfactants can interact with proteins or peptides by polar and hydrophobic binding. Polar interactions result in electrostatic bonds between the negatively charged groups of the protein molecule and the positively charged surfactant molecule.

Sensitisation: A repeated insult patch test of C16 ATMAC was conducted with 114 volunteers. Seventeen days after the last induction of 0.25% surfactant, a challenge patch of 0.25% was applied. No sensitization was observed.

Sub-chronic toxicity: C16 ATMAC was administered at concentrations of 10, 20, and 45 mg/kg/day via the drinking water to rats for one year. The only effect observed was a decrease in body weight gain in the 45 mg/kg/day group.

Reproductive toxicity: No embryo toxic effects were seen, when C16 ATMAC was applied dermally to pregnant rats during the period of major organogenesis (day 6-15 of gestation). They are classified as Corrosive (C-) with toxic phrases R22 and R34 (Causes burns). C16 ATMAC is classified as Harmful (Xn) with the risk phrases R22 (Harmful if swallowed) and R38 (Irritating to skin), and R41 (Risk of serious damage to eyes). C20-22 ATMAC are classified as Irritant (Xi) with R36/38 (Irritating to eyes and skin).

Mutagenicity: C16 ATMAC was studied in vitro and in vivo short-term tests to detect potential mutagenic effects. Culture of Syrian golden hamster embryo cells were used for an in vitro bioassay. No in vitro transformation of hamster embryo cells was induced, and C16 ATMAC was not mutagenic in Salmonella typhimurium (Inoue and Sunakawa 1980). No mutagenic effects or genetic damages were indicated in a survey of nine short-term genotoxicity tests with C16 and C18 ATMAC (Yam et al. 1994).

Environmental and Health Assessment of Substances in Household Detergents and Cosmetic Detergent Products, Environment Project, 615, 2001. Torben Madsen et al: Miljoministeriet (Danish Environmental Protection Agency)

For quaternary ammonium compounds (QACs): Quaternary ammonium compounds (QACs) are cationic surfactants. They are synthetic organically tetra-substituted ammonium compounds, where the R substituents are alkyl or heterocyclic radicals. A common characteristic of these synthetic compounds is that one of the R’s is a long-chain hydrophobic aliphatic residue. The cationic surfactant active compounds are in general more toxic than the anionic and non-ionic surfactants. The positively-charged cationic portion is the functional part of the molecule that is responsible for the local irritation effects of QACs. Due to their relative ability to solubilise phospholipids and cholesterol in lipid membranes, QACs affect cell permeability which may lead to cell death. Further QACs denature proteins as cationic materials precipitate protein and are accompanied by generalised tissue irritation. It has been suggested that the experimentally determined decrease in acute toxicity of QACs with chain lengths above C16 is due to decreased water solubility. In general it appears that QACs with a single long-chain alkyl groups are more toxic and irritating than those with two such substitutions.
The straight chain aliphatic QACs have been shown to release histamine from minced guinea pig lung tissue. However, studies with benzalkonium chloride have shown that the effect on histamine release depends on the concentration of the solution. When cell suspensions (11% mast cells) from rats were exposed to low concentrations, a decrease in histamine release was seen. When exposed to high concentrations the opposite result was obtained.

In addition, QACs may show curare-like properties (specifically benzalkonium and cetylpyridinium derivatives, a muscular paralysis with no involvement of the central nervous system. This is most often associated with lethal doses. Parenteral injections in rats, rabbits and dogs have resulted in prompt but transient limb paralysis and sometimes fatal paresis of the respiratory muscles. This effect seems to be transient. From human testing of different QACs the generalised conclusion is obtained that all the compounds investigated to date exhibit similar toxicological properties.

The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis.

CETYLTRIMETHYLLAMMONIUM BROMIDE & CHLORHEXIDINE

Asthma-like symptoms may continue for months or even years after exposure to the material. This may be due to a non-allergic condition known as reactive airways dysfunction syndrome (RADS) which can occur following exposure to high levels of highly irritating compound. Key criteria for the diagnosis of RADS include the absence of preceding respiratory disease, in a non-atopic individual, with abrupt onset of persistent asthma-like symptoms within minutes to hours of a documented exposure to the irritant. A reversible airflow pattern, on spirometry, with the presence of moderate to severe bronchial hyperreactivity on methacholine challenge testing and the lack of minimal lymphocytic inflammation, without eosinophilia, have also been included in the criteria for diagnosis of RADS. RADS (or asthma) following an inhalation of irritant is an infrequent disorder with rates related to the concentration of and duration of exposure to the irritating substance. The onset of persistent asthma-like symptoms within minutes to hours of exposure to irritants is an acute disorder. Industrial bronchitis, on the other hand, is a disorder that occurs as result of exposure due to high concentrations of irritating substance (often particulate in nature) and is completely reversible after exposure ceases. This disorder is characterised by dyspnea, cough and mucus production.

Acute Toxicity

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Test Duration (hr)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Carcinogenicity

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Test Duration (hr)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCF</td>
<td>134h</td>
<td>Fish</td>
<td>407-741</td>
<td>7</td>
</tr>
<tr>
<td>EC50(ECx)</td>
<td>504h</td>
<td>Crustacea</td>
<td><0.001mg/L</td>
<td>2</td>
</tr>
<tr>
<td>LC50</td>
<td>96h</td>
<td>Fish</td>
<td>~0.1mg/L</td>
<td>2</td>
</tr>
<tr>
<td>EC50</td>
<td>96h</td>
<td>Algae or other aquatic plants</td>
<td>0.03mg/L</td>
<td>5</td>
</tr>
</tbody>
</table>

Reproductivity

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Test Duration (hr)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOEC(ECx)</td>
<td>72h</td>
<td>Algae or other aquatic plants</td>
<td>0.004mg/L</td>
<td>2</td>
</tr>
<tr>
<td>EC50</td>
<td>72h</td>
<td>Algae or other aquatic plants</td>
<td>0.021mg/L</td>
<td>2</td>
</tr>
<tr>
<td>LC50</td>
<td>96h</td>
<td>Fish</td>
<td>1mg/L</td>
<td>1</td>
</tr>
<tr>
<td>EC50</td>
<td>48h</td>
<td>Crustacea</td>
<td>0.09mg/L</td>
<td>2</td>
</tr>
</tbody>
</table>

Ethanol

No significant acute toxicological data identified in literature search.

SECTION 12 Ecological information

Toxicity

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Test Duration (hr)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>BCF</td>
<td>134h</td>
<td>Fish</td>
<td>407-741</td>
<td>7</td>
</tr>
<tr>
<td>EC50(ECx)</td>
<td>504h</td>
<td>Crustacea</td>
<td><0.001mg/L</td>
<td>2</td>
</tr>
<tr>
<td>LC50</td>
<td>96h</td>
<td>Fish</td>
<td>~0.1mg/L</td>
<td>2</td>
</tr>
<tr>
<td>EC50</td>
<td>96h</td>
<td>Algae or other aquatic plants</td>
<td>0.03mg/L</td>
<td>5</td>
</tr>
</tbody>
</table>

Cetyltrimethylammonium bromide & Chlorhexidine

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Test Duration (hr)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOEC(ECx)</td>
<td>72h</td>
<td>Algae or other aquatic plants</td>
<td>0.004mg/L</td>
<td>2</td>
</tr>
<tr>
<td>EC50</td>
<td>72h</td>
<td>Algae or other aquatic plants</td>
<td>0.021mg/L</td>
<td>2</td>
</tr>
<tr>
<td>LC50</td>
<td>96h</td>
<td>Fish</td>
<td>1mg/L</td>
<td>1</td>
</tr>
<tr>
<td>EC50</td>
<td>48h</td>
<td>Crustacea</td>
<td>0.09mg/L</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Test Duration (hr)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC50(ECx)</td>
<td>96h</td>
<td>Algae or other aquatic plants</td>
<td><0.001mg/L</td>
<td>4</td>
</tr>
</tbody>
</table>

Legend:

- Data either not available or does not fill the criteria for classification
- Data available to make classification
<table>
<thead>
<tr>
<th>Endpoint</th>
<th>Test Duration (hr)</th>
<th>Species</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>EC50</td>
<td>72h</td>
<td>Algae or other aquatic plants</td>
<td>275mg/l</td>
<td>2</td>
</tr>
<tr>
<td>LC50</td>
<td>96h</td>
<td>Fish</td>
<td>>100mg/l</td>
<td>2</td>
</tr>
<tr>
<td>EC50</td>
<td>48h</td>
<td>Crustacea</td>
<td>>79mg/L</td>
<td>4</td>
</tr>
<tr>
<td>EC50</td>
<td>96h</td>
<td>Algae or other aquatic plants</td>
<td><0.001mg/L</td>
<td>4</td>
</tr>
</tbody>
</table>

Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data

Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment.

DO NOT discharge into sewer or waterways.

Persistence and degradability

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Persistence: Water/Soil</th>
<th>Persistence: Air</th>
</tr>
</thead>
<tbody>
<tr>
<td>cetyltrimethylammonium bromide</td>
<td>LOW</td>
<td>LOW</td>
</tr>
<tr>
<td>chlorhexidine</td>
<td>HIGH</td>
<td>HIGH</td>
</tr>
<tr>
<td>ethanol</td>
<td>LOW (Half-life = 2.17 days)</td>
<td>LOW (Half-life = 5.08 days)</td>
</tr>
<tr>
<td>water</td>
<td>LOW</td>
<td>LOW</td>
</tr>
</tbody>
</table>

Bioaccumulative potential

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Bioaccumulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>cetyltrimethylammonium bromide</td>
<td>MEDIUM (BCF = 741)</td>
</tr>
<tr>
<td>chlorhexidine</td>
<td>HIGH (LogKOW = 4.852)</td>
</tr>
<tr>
<td>ethanol</td>
<td>LOW (LogKOW = -0.31)</td>
</tr>
</tbody>
</table>

Mobility in soil

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>cetyltrimethylammonium bromide</td>
<td>LOW (KOC = 162300)</td>
</tr>
<tr>
<td>chlorhexidine</td>
<td>LOW (KOC = 18970000)</td>
</tr>
<tr>
<td>ethanol</td>
<td>HIGH (KOC = 1)</td>
</tr>
</tbody>
</table>

SECTION 13 Disposal considerations

Waste treatment methods

Product / Packaging disposal

Legislation addressing waste disposal requirements may differ by country, state and/or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked.

A Hierarchy of Controls seems to be common - the user should investigate:

- Reduction
- Reuse
- Recycling
- Disposal (if all else fails)

This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate.

- DO NOT allow wash water from cleaning or process equipment to enter drains.
- It may be necessary to collect all wash water for treatment before disposal.
- In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first.
- Where in doubt contact the responsible authority.
- Recycle wherever possible or consult manufacturer for recycling options.
- Consult State Land Waste Authority for disposal.
- Bury or incinerate residue at an approved site.
- Recycle containers if possible, or dispose of in an authorised landfill.

SECTION 14 Transport information

Labels Required

<table>
<thead>
<tr>
<th>Marine Pollutant</th>
<th>HAZCHEM</th>
</tr>
</thead>
<tbody>
<tr>
<td>NO</td>
<td>Not Applicable</td>
</tr>
</tbody>
</table>

Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS
Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS

Transport in bulk according to Annex II of MARPOL and the IBC code
Not Applicable

Transport in bulk in accordance with MARPOL Annex V and the IMSBC Code

<table>
<thead>
<tr>
<th>Product name</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>cetyltrimethylammonium bromide</td>
<td>Not Available</td>
</tr>
<tr>
<td>chlorhexidine</td>
<td>Not Available</td>
</tr>
<tr>
<td>ethanol</td>
<td>Not Available</td>
</tr>
<tr>
<td>water</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

Transport in bulk in accordance with the ICG Code

<table>
<thead>
<tr>
<th>Product name</th>
<th>Ship Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>cetyltrimethylammonium bromide</td>
<td>Not Available</td>
</tr>
<tr>
<td>chlorhexidine</td>
<td>Not Available</td>
</tr>
<tr>
<td>ethanol</td>
<td>Not Available</td>
</tr>
<tr>
<td>water</td>
<td>Not Available</td>
</tr>
</tbody>
</table>

SECTION 15 Regulatory information

Safety, health and environmental regulations / legislation specific for the substance or mixture

cetyltrimethylammonium bromide is found on the following regulatory lists
- Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals
- Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5
- Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6
- Australian Inventory of Industrial Chemicals (AIIC)

chlorhexidine is found on the following regulatory lists
- Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals
- Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5
- Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6
- Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 7
- Australian Inventory of Industrial Chemicals (AIIC)

ethanol is found on the following regulatory lists
- Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 5
- Australian Inventory of Industrial Chemicals (AIIC)

water is found on the following regulatory lists
- Australian Inventory of Industrial Chemicals (AIIC)

National Inventory Status

<table>
<thead>
<tr>
<th>National Inventory</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Australia - AIIC / Australia Non-Industrial Use</td>
<td>Yes</td>
</tr>
<tr>
<td>Canada - DSL</td>
<td>Yes</td>
</tr>
<tr>
<td>Canada - NDSL</td>
<td>No (cetyltrimethylammonium bromide; chlorhexidine; ethanol; water)</td>
</tr>
<tr>
<td>China - IECSC</td>
<td>Yes</td>
</tr>
<tr>
<td>Europe - EINEC / ELINCS / NLP</td>
<td>Yes</td>
</tr>
<tr>
<td>Japan - ENCS</td>
<td>Yes</td>
</tr>
<tr>
<td>Korea - KECI</td>
<td>No (chlorhexidine)</td>
</tr>
<tr>
<td>New Zealand - NZIoC</td>
<td>Yes</td>
</tr>
<tr>
<td>Philippines - PICCS</td>
<td>Yes</td>
</tr>
<tr>
<td>USA - TSCA</td>
<td>Yes</td>
</tr>
<tr>
<td>Taiwan - TCSI</td>
<td>Yes</td>
</tr>
<tr>
<td>Mexico - INSQ</td>
<td>Yes</td>
</tr>
<tr>
<td>Vietnam - NCI</td>
<td>Yes</td>
</tr>
<tr>
<td>Russia - FBEPH</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Legend: Yes = All CAS declared ingredients are on the inventory
No = One or more of the CAS listed ingredients are not on the inventory. These ingredients may be exempt or will require registration.

SECTION 16 Other information

<table>
<thead>
<tr>
<th>Revision Date</th>
<th>Initial Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>11/01/2019</td>
<td>04/04/2005</td>
</tr>
</tbody>
</table>

SDS Version Summary

Continued...
Version	Date of Update	Sections Updated
5.1.1.1 | 03/24/2017 | Acute Health (eye), Acute Health (skin), Acute Health (swallowed), Advice to Doctor, Appearance, Chronic Health, Classification, Disposal, Engineering Control, Environmental, Fire Fighter (extinguishing media), Fire Fighter (fire/explosion hazard), Fire Fighter (fire fighting), Fire Fighter (fire incompatibility), Handling Procedure, Ingredients, Personal Protection (other), Physical Properties, Spills (major), Spills (minor), Storage (storage requirement), Storage (suitable container), Transport, Transport Information
6.1.1.1 | 11/01/2019 | One-off system update. NOTE: This may or may not change the GHS classification
6.1.2.1 | 04/26/2021 | Regulation Change
6.1.3.1 | 05/03/2021 | Regulation Change
6.1.4.1 | 05/06/2021 | Regulation Change
6.1.5.1 | 05/10/2021 | Regulation Change
6.1.5.2 | 05/30/2021 | Template Change
6.1.5.3 | 06/04/2021 | Template Change
6.1.5.4 | 06/05/2021 | Template Change
6.1.6.4 | 06/07/2021 | Regulation Change
6.1.6.5 | 06/09/2021 | Template Change
6.1.6.6 | 06/11/2021 | Template Change
6.1.6.7 | 06/15/2021 | Template Change
6.1.7.7 | 06/17/2021 | Regulation Change
6.1.8.7 | 06/21/2021 | Regulation Change
6.1.8.8 | 07/05/2021 | Template Change
6.1.9.8 | 07/14/2021 | Regulation Change
6.1.10.8 | 07/19/2021 | Regulation Change
6.1.10.9 | 08/01/2021 | Template Change
6.1.11.9 | 08/02/2021 | Regulation Change
6.1.12.9 | 08/05/2021 | Regulation Change
6.1.13.9 | 08/09/2021 | Regulation Change
6.1.14.9 | 08/23/2021 | Regulation Change
6.1.15.9 | 08/26/2021 | Regulation Change
6.1.15.10 | 08/29/2021 | Template Change

Other information
Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references.

The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered.

Definitions and abbreviations
PC – TWA: Permissible Concentration-Time Weighted Average
PC – STEL: Permissible Concentration-Short Term Exposure Limit
IARC: International Agency for Research on Cancer
ACGIH: American Conference of Governmental Industrial Hygienists
STEL: Short Term Exposure Limit
TEEL: Temporary Emergency Exposure Limit,
IDLH: Immediately Dangerous to Life or Health Concentrations
ES: Exposure Standard
OSF: Odour Safety Factor
NOAEL: No Observed Adverse Effect Level
LOAEL: Lowest Observed Adverse Effect Level
TLV: Threshold Limit Value
LOD: Limit Of Detection
OTV: Odour Threshold Value
BCF: BioConcentration Factors
BEI: Biological Exposure Index
AIIC: Australian Inventory of Industrial Chemicals
DSL: Domestic Substances List
NDSL: Non-Domestic Substances List
IECS: Inventory of Existing Chemical Substance in China
EINECS: European Inventory of Existing Commercial chemical Substances
ELINCS: European List of Notified Chemical Substances
NLP: No-Longer Polymers
ENCS: Existing and New Chemical Substances Inventory
KECI: Korea Existing Chemicals Inventory
NZIoC: New Zealand Inventory of Chemicals
PICCS: Philippine Inventory of Chemicals and Chemical Substances
TSCA: Toxic Substances Control Act
TCSI: Taiwan Chemical Substance Inventory
INSQ: Inventario Nacional de Sustancias Quimicas
NCI: National Chemical Inventory
FBEPH: Russian Register of Potentially Hazardous Chemical and Biological Substances

This document is copyright.