Cydectin Platinum Low Volume Pour-On for Cattle ## Virbac (Australia) Pty Limited Chemwatch: **69-6930** Version No: **5.1.1.1** Safety Data Sheet according to WHS and ADG requirements Chemwatch Hazard Alert Code: 2 Issue Date: **04/16/2019** Print Date: **04/16/2019** L.GHS.AUS.EN ## SECTION 1 IDENTIFICATION OF THE SUBSTANCE / MIXTURE AND OF THE COMPANY / UNDERTAKING ## **Product Identifier** | Product name | Cydectin Platinum Low Volume Pour-On for Cattle | | | |-------------------------------|---|--|--| | Synonyms | Moxilev | | | | Other means of identification | Not Available | | | ## Relevant identified uses of the substance or mixture and uses advised against Relevant identified uses Use according to manufacturer's directions. Used as an endectocide in treating and controlling internal parasites. For Animal treatment Only. ## Details of the supplier of the safety data sheet | Registered company name | Virbac (Australia) Pty Limited | |-------------------------|--| | Address | 361 Horsley Road Milperra NSW 2214 Australia | | Telephone | 1800 242 100 | | Fax | +61 2 9772 9773 | | Website | au.virbac.com | | Email | au_customerservice@virbac.com.au | ## Emergency telephone number | Association / Organisation | Poisons Information Centre | |-----------------------------------|----------------------------| | Emergency telephone numbers | 13 11 26 | | Other emergency telephone numbers | Not Available | ## **SECTION 2 HAZARDS IDENTIFICATION** ## Classification of the substance or mixture | Poisons Schedule | S6 | | |-------------------------------|---|--| | Classification ^[1] | Acute Toxicity (Oral) Category 4, Acute Toxicity (Dermal) Category 4, Skin Corrosion/Irritation Category 2, Eye Irritation Category 2A, Chronic Aquatic Hazard Category 3 | | | Legend: | 1. Classified by Chemwatch; 2. Classification drawn from HCIS; 3. Classification drawn from Regulation (EU) No 1272/2008 - Annex VI | | ## Label elements ## Hazard pictogram(s) | SIGNAL WORD | WARNING | |---------------------|--| | Hazard statement(s) | | | H302 | Harmful if swallowed. | | H312 | Harmful in contact with skin. | | H315 | Causes skin irritation. | | H319 | Causes serious eye irritation. | | H412 | Harmful to aquatic life with long lasting effects. | ## Precautionary statement(s) Prevention | Frecautionary statement(s) Prevention | | | | |---------------------------------------|--|--|--| | P270 | Do not eat, drink or smoke when using this product. | | | | P273 | Avoid release to the environment. | | | | P280 | Wear protective gloves/protective clothing/eye protection/face protection. | | | Chemwatch: 69-6930 Page 2 of 12 Issue Date: 04/16/2019 Version No: 5.1.1.1 ## Cydectin Platinum Low Volume Pour-On for Cattle Print Date: 04/16/2019 ## Precautionary statement(s) Response | P362 | Take off contaminated clothing and wash before reuse. | |----------------|--| | P305+P351+P338 | IF IN EYES: Rinse cautiously with water for several minutes. Remove contact lenses, if present and easy to do. Continue rinsing. | | P337+P313 | If eye irritation persists: Get medical advice/attention. | | P301+P312 | IF SWALLOWED: Call a POISON CENTER or doctor/physician if you feel unwell. | | P302+P352 | IF ON SKIN: Wash with plenty of soap and water. | | P330 | Rinse mouth. | | P332+P313 | If skin irritation occurs: Get medical advice/attention. | ## Precautionary statement(s) Storage Not Applicable ## Precautionary statement(s) Disposal Dispose of contents/container in accordance with local regulations. ## **SECTION 3 COMPOSITION / INFORMATION ON INGREDIENTS** ## Substances See section below for composition of Mixtures #### **Mixtures** | CAS No | %[weight] | Name | |---------------|-----------|--| | 14769-73-4 | 18.58 | levamisole base | | Not Available | | (210g/L) | | 113507-06-5 | 0.973 | <u>moxidectin</u> | | Not Available | | (11g/L) | | 112-34-5 | 10-20 | diethylene glycol monobutyl ether | | Not Available | | Ingredients determined not to be hazardous | ## **SECTION 4 FIRST AID MEASURES** | Description of first aid measu | ıres | |--------------------------------|--| | Eye Contact | If this product comes in contact with the eyes: • Wash out immediately with fresh running water. • Ensure complete irrigation of the eye by keeping eyelids apart and away from eye and moving the eyelids by occasionally lifting the upper and lower lids. • Seek medical attention without delay; if pain persists or recurs seek medical attention. • Removal of contact lenses after an eye injury should only be undertaken by skilled personnel. | | Skin Contact | If skin contact occurs: Immediately remove all contaminated clothing, including footwear. Flush skin and hair with running water (and soap if available). Seek medical attention in event of irritation. | | Inhalation | If fumes or combustion products are inhaled remove from contaminated area. Lay patient down. Keep warm and rested. Prostheses such as false teeth, which may block airway, should be removed, where possible, prior to initiating first aid procedures. Apply artificial respiration if not breathing, preferably with a demand valve resuscitator, bag-valve mask device, or pocket mask as trained. Perform CPR if necessary. Transport to hospital, or doctor. | | Ingestion | If SWALLOWED, REFER FOR MEDICAL ATTENTION, WHERE POSSIBLE, WITHOUT DELAY. For advice, contact a Poisons Information Centre or a doctor. Urgent hospital treatment is likely to be needed. In the mean time, qualified first-aid personnel should treat the patient following observation and employing supportive measures as indicated by the patient's condition. If the services of a medical officer or medical doctor are readily available, the patient should be placed in his/her care and a copy of the SDS should be provided. Further action will be the responsibility of the medical specialist. If medical attention is not available on the worksite or surroundings send the patient to a hospital together with a copy of the SDS. | ## Indication of any immediate medical attention and special treatment needed possible) to maintain open airway and prevent aspiration. NOTE: Wear a protective glove when inducing vomiting by mechanical means. otherwise: As in all cases of suspected poisoning, follow the ABCDEs of emergency medicine (airway, breathing, circulation, disability, exposure), then the ABCDEs of toxicology (antidotes, basics, change absorption, change distribution, change elimination). Where medical attention is not immediately available or where the patient is more than 15 minutes from a hospital or unless instructed ▶ INDUCE vomiting with fingers down the back of the throat, ONLY IF CONSCIOUS. Lean patient forward or place on left side (head-down position, if For poisons (where specific treatment regime is absent): #### -----BASIC TREATMENT - ▶ Establish a patent airway with suction where necessary. - Watch for signs of respiratory insufficiency and assist ventilation as necessary. Chemwatch: 69-6930 Page 3 of 12 Issue Date: 04/16/2019 Version No: 5.1.1.1 #### Cydectin Platinum Low Volume Pour-On for Cattle Print Date: 04/16/2019 - ▶ Administer oxygen by non-rebreather mask at 10 to 15 L/min. - Monitor and treat, where necessary, for pulmonary oedema - Monitor and treat, where necessary, for shock. - Anticipate seizures - DO NOT use emetics. Where ingestion is suspected rinse mouth and give up to 200 ml water (5 ml/kg recommended) for dilution where patient is able to swallow, has a strong gag reflex and does not drool. ### ADVANCED TREATMENT - ▶ Consider orotracheal or nasotracheal intubation for airway control in unconscious patient or where respiratory arrest has occurred. - Positive-pressure ventilation using a bag-valve mask might be of use. - Monitor and treat, where necessary, for arrhythmias. - Start an IV D5W TKO. If signs of hypovolaemia are present use lactated Ringers solution. Fluid overload might create complications. - Drug therapy should be considered for pulmonary oedema. - Hypotension with signs of hypovolaemia requires the cautious administration of fluids. Fluid overload might create complications. - Treat seizures with diazepam. - ▶ Proparacaine hydrochloride should be used to assist eye irrigation. BRONSTEIN, A.C. and CURRANCE, P.L. EMERGENCY CARE FOR HAZARDOUS MATERIALS EXPOSURE: 2nd Ed. 1994 Treat symptomatically. For abamectin (avermectins): Toxicity following accidental ingestion may be minimised by emesis-induction within one half hour of exposure. Since abamectin is thought to bind to
glutamate-gated chloride ion channels, it is probably wise to avoid drugs that also interact with other ligand-gated chloride channels, including those that enhance GABA activity in patients with potentially toxic abarnectin exposure Avoid drugs that enhance GABA activity (barbiturate, benzodiazepines, valproic acid, etc.). ## **SECTION 5 FIREFIGHTING MEASURES** ## Extinguishing media - ► Foam. - ▶ Dry chemical powder. - ▶ BCF (where regulations permit). - Carbon dioxide - Water spray or fog Large fires only. ## Special hazards arising from the substrate or mixture | Fire Incompatibility | ► Avoid contamination with oxidising agents i.e. nitrates, oxidising acids, chlorine bleaches, pool chlorine etc. as ignition may result | |-------------------------|--| | Advice for firefighters | | | Fire Fighting | Alert Fire Brigade and tell them location and nature of hazard. Wear full body protective clothing with breathing apparatus. Prevent, by any means available, spillage from entering drains or water course. Use water delivered as a fine spray to control fire and cool adjacent area. Avoid spraying water onto liquid pools. DO NOT approach containers suspected to be hot. Cool fire exposed containers with water spray from a protected location. If safe to do so, remove containers from path of fire. | | Fire/Explosion Hazard | ▶ Combustible. ▶ Slight fire hazard when exposed to heat or flame. ▶ Heating may cause expansion or decomposition leading to violent rupture of containers. ▶ On combustion, may emit toxic fumes of carbon monoxide (CO). ▶ May emit acrid smoke. ▶ Mists containing combustible materials may be explosive. Combustion products include: carbon dioxide (CO2) hydrogen chloride phosgene nitrogen oxides (NOx) sulfur oxides (SOx) other pyrolysis products typical of burning organic material. | May emit poisonous fumes. May emit corrosive fumes. WARNING: Long standing in contact with air and light may result in the formation of potentially explosive peroxides. HAZCHEM Not Applicable ## **SECTION 6 ACCIDENTAL RELEASE MEASURES** ## Personal precautions, protective equipment and emergency procedures See section 8 ## **Environmental precautions** See section 12 ## Methods and material for containment and cleaning up ## Minor Spills - Remove all ignition sources. - Clean up all spills immediately. - Avoid breathing vapours and contact with skin and eyes. ► Control personal contact with the substance, by using protective equipment. - ► Contain and absorb spill with sand, earth, inert material or vermiculite. - ▶ Wipe up. Chemwatch: 69-6930 Page 4 of 12 Issue Date: 04/16/2019 Version No: 5.1.1.1 Print Date: 04/16/2019 #### Cydectin Platinum Low Volume Pour-On for Cattle Place in a suitable, labelled container for waste disposal. Moderate hazard. Clear area of personnel and move upwind. Alert Fire Brigade and tell them location and nature of hazard. Wear breathing apparatus plus protective gloves. Prevent, by any means available, spillage from entering drains or water course. No smoking, naked lights or ignition sources. Increase ventilation. Stop leak if safe to do so. Contain spill with sand, earth or vermiculite. Collect recoverable product into labelled containers for recycling. Absorb remaining product with sand, earth or vermiculite. Collect solid residues and seal in labelled drums for disposal. Wash area and prevent runoff into drains. Personal Protective Equipment advice is contained in Section 8 of the SDS. ### **SECTION 7 HANDLING AND STORAGE** Safe handling ## Precautions for safe handling #### ▶ DO NOT allow clothing wet with material to stay in contact with skin If contamination of drains or waterways occurs, advise emergency services. The tendency of many ethers to form explosive peroxides is well documented. Ethers lacking non-methyl hydrogen atoms adjacent to the ether link are thought to be relatively safe - DO NOT concentrate by evaporation, or evaporate extracts to dryness, as residues may contain explosive peroxides with DETONATION potential. - ▶ Any static discharge is also a source of hazard. - Before any distillation process remove trace peroxides by shaking with excess 5% aqueous ferrous sulfate solution or by percolation through a column of activated alumina. - Distillation results in uninhibited ether distillate with considerably increased hazard because of risk of peroxide formation on storage. - Add inhibitor to any distillate as required - When solvents have been freed from peroxides by percolation through columns of activated alumina, the absorbed peroxides must promptly be desorbed by treatment with polar solvents such as methanol or water, which should then be disposed of safely. The substance accumulates peroxides which may become hazardous only if it evaporates or is distilled or otherwise treated to concentrate the peroxides. The substance may concentrate around the container opening for example. Purchases of peroxidisable chemicals should be restricted to ensure that the chemical is used completely before it can become peroxidised. - A responsible person should maintain an inventory of peroxidisable chemicals or annotate the general chemical inventory to indicate which chemicals are subject to peroxidation. An expiration date should be determined. The chemical should either be treated to remove peroxides or disposed of before this date. - The person or laboratory receiving the chemical should record a receipt date on the bottle. The individual opening the container should add an opening date. - ▶ Unopened containers received from the supplier should be safe to store for 18 months. - ► Opened containers should not be stored for more than 12 months - Avoid all personal contact, including inhalation. - ► Wear protective clothing when risk of exposure occurs. - Use in a well-ventilated area. - Prevent concentration in hollows and sumps. - ► DO NOT enter confined spaces until atmosphere has been checked - Avoid smoking, naked lights or ignition sources. - Avoid contact with incompatible materials. - When handling, DO NOT eat, drink or smoke. - ► Keep containers securely sealed when not in use. - Avoid physical damage to containers. - Always wash hands with soap and water after handling. - ► Work clothes should be laundered separately - Use good occupational work practice. - ► Observe manufacturer's storage and handling recommendations contained within this SDS. - ▶ Atmosphere should be regularly checked against established exposure standards to ensure safe working conditions. ## Other information - ▶ Store in original containers. - Keep containers securely sealed. - No smoking, naked lights or ignition sources. Store in a cool dry well contileted area. - ► Store in a cool, dry, well-ventilated area. - Store away from incompatible materials and foodstuff containers. - Protect containers against physical damage and check regularly for leaks. - ▶ Observe manufacturer's storage and handling recommendations contained within this SDS. ## Conditions for safe storage, including any incompatibilities ## Suitable containe - ► Metal can or drum - Packaging as recommended by manufacturer. - Check all containers are clearly labelled and free from leaks # Storage incompatibility - Glycol ethers may form peroxides under certain conditions; the potential for peroxide formation is enhanced when these substances are used in processes such as distillation where they are concentrated or even evaporated to near-dryness or dryness; storage under a nitrogen atmosphere is recommended to minimise the possible formation of highly reactive peroxides - ▶ Nitrogen blanketing is recommended if transported in containers at temperatures within 15 deg C of the flash-point and at or above the flash-point large containers may first need to be purged and inerted with nitrogen prior to loading - ▶ In the presence of strong bases or the salts of strong bases, at elevated temperatures, the potential exists for runaway reactions. - Contact with aluminium should be avoided; release of hydrogen gas may result-glycol ethers will corrode scratched aluminium surfaces. - · May discolour in mild steel/ copper; lined containers, glass or stainless steel is preferred - Glycols and their ethers undergo violent decomposition in contact with 70% perchloric acid. This seems likely to involve formation of the glycol perchlorate esters (after scission of ethers) which are explosive, those of ethylene glycol and 3-chloro-1,2-propanediol being more powerful than glyceryl nitrate, and the former so sensitive that it explodes on addition of water. Investigation of the hazards associated with use of 2-butoxyethanol for alloy electropolishing showed that mixtures with 50-95% of acid at 20 deg C, or 40-90% at 75 C, were explosive and initiable by sparks. Sparking caused mixtures with 40-50% of acid to become explosive, but 30% solutions appeared safe under static conditions of temperature and concentration. - ► The unhindered oxygen atom found on cyclic ethers such as the epoxides, oxetanes, furans, dioxanes and pyrans, carries two unshared pairs of electrons a structure which favors the formation of coordination complexes and the solvation
of cations. Chemwatch: 69-6930 Page 5 of 12 Version No: 5.1.1.1 Cycloctin Platinum Low ## Cydectin Platinum Low Volume Pour-On for Cattle Issue Date: **04/16/2019**Print Date: **04/16/2019** - ▶ Cyclic ethers are used as important solvents, as chemical intermediate and as monomers for ring-opening polymerization. - F They are unstable at room temperature due to possibility of peroxide formation; stabiliser is sometimes needed for storage and transportation. - NOTE: Ethers lacking non-methyl hydrogen atoms adjacent to the ether link are thought to be relatively safe - ► Avoid reaction with oxidising agents ## **SECTION 8 EXPOSURE CONTROLS / PERSONAL PROTECTION** #### **Control parameters** OCCUPATIONAL EXPOSURE LIMITS (OEL) INGREDIENT DATA Not Available #### **EMERGENCY LIMITS** | Ingredient | Material name | | IEEL-1 | TEEL-2 | TEEL-3 | |-----------------------------------|--|---------------|--------|--------|---------| | diethylene glycol monobutyl ether | Butoxyethoxy)ethanol, 2-(2-; (Diethylene glycol monobutyl ether) | | 30 ppm | 33 ppm | 200 ppm | | | | | | | | | Ingredient | Original IDLH | Revised IDLH | | | | | levamisole base | Not Available | Not Available | | | | | moxidectin | Not Available | Not Available | | | | | diethylene glycol monobutyl ether | Not Available | Not Available | | | | #### MATERIAL DATA #### **Exposure controls** Engineering controls are used to remove a hazard or place a barrier between the worker and the hazard. Well-designed engineering controls can be highly effective in protecting workers and will typically be independent of worker interactions to provide this high level of protection. The basic types of engineering controls are: Process controls which involve changing the way a job activity or process is done to reduce the risk. Enclosure and/or isolation of emission source which keeps a selected hazard "physically" away from the worker and ventilation that strategically "adds" and "removes" air in the work environment. Ventilation can remove or dilute an air contaminant if designed properly. The design of a ventilation system must match the particular process and chemical or contaminant in use. Employers may need to use multiple types of controls to prevent employee overexposure. Local exhaust ventilation usually required. If risk of overexposure exists, wear approved respirator. Correct fit is essential to obtain adequate protection. Supplied-air type respirator may be required in special circumstances. Correct fit is essential to ensure adequate protection. An approved self contained breathing apparatus (SCBA) may be required in some situations. Provide adequate ventilation in warehouse or closed storage area. Air contaminants generated in the workplace possess varying "escape" velocities which, in turn, determine the "capture velocities" of fresh circulating air required to effectively remove the contaminant. | Type of Contaminant: | Air Speed: | |---|---------------------------------| | solvent, vapours, degreasing etc., evaporating from tank (in still air). | 0.25-0.5 m/s (50-100 f/min.) | | aerosols, fumes from pouring operations, intermittent container filling, low speed conveyer transfers, welding, spray drift, plating acid fumes, pickling (released at low velocity into zone of active generation) | 0.5-1 m/s (100-200 f/min.) | | direct spray, spray painting in shallow booths, drum filling, conveyer loading, crusher dusts, gas discharge (active generation into zone of rapid air motion) | 1-2.5 m/s (200-500 f/min.) | | grinding, abrasive blasting, tumbling, high speed wheel generated dusts (released at high initial velocity into zone of very high rapid air motion). | 2.5-10 m/s
(500-2000 f/min.) | # Appropriate engineering controls Within each range the appropriate value depends on: | Lower end of the range | Upper end of the range | |--|----------------------------------| | 1: Room air currents minimal or favourable to capture | 1: Disturbing room air currents | | 2: Contaminants of low toxicity or of nuisance value only. | 2: Contaminants of high toxicity | | 3: Intermittent, low production. | 3: High production, heavy use | | 4: Large hood or large air mass in motion | 4: Small hood-local control only | Simple theory shows that air velocity falls rapidly with distance away from the opening of a simple extraction pipe. Velocity generally decreases with the square of distance from the extraction point (in simple cases). Therefore the air speed at the extraction point should be adjusted, accordingly, after reference to distance from the contaminating source. The air velocity at the extraction fan, for example, should be a minimum of 1-2 m/s (200-400 f/min) for extraction of solvents generated in a tank 2 meters distant from the extraction point. Other mechanical considerations, producing performance deficits within the extraction apparatus, make it essential that theoretical air velocities are multiplied by factors of 10 or more when extraction systems are installed or used. ## Personal protection ## rersonal protection - Safety glasses. - Safety glasses with side shields. - ▶ Chemical goggle ## Eye and face protection Contact lenses may pose a special hazard; soft contact lenses may absorb and concentrate irritants. A written policy document, describing the wearing of lenses or restrictions on use, should be created for each workplace or task. This should include a review of lens absorption and adsorption for the class of chemicals in use and an account of injury experience. Medical and first-aid personnel should be trained in their removal and suitable equipment should be readily available. In the event of chemical exposure, begin eye irrigation immediately and remove contact lens as soon as practicable. Lens should be removed at the first signs of eye redness or irritation - lens should be removed in a clean environment only after workers have washed hands thoroughly. [CDC NIOSH Current Intelligence Bulletin 59], [AS/NZS 1336 or national equivalent] Chemwatch: 69-6930 Page 6 of 12 Issue Date: 04/16/2019 Version No: 5.1.1.1 Print Date: 04/16/2019 ## Cydectin Platinum Low Volume Pour-On for Cattle Skin protection See Hand protection below NOTE ► The material may produce skin sensitisation in predisposed individuals. Care must be taken, when removing gloves and other protective equipment, to avoid all possible skin contact ► Contaminated leather items, such as shoes, belts and watch-bands should be removed and destroyed. The selection of suitable gloves does not only depend on the material, but also on further marks of quality which vary from manufacturer to manufacturer. Where the chemical is a preparation of several substances, the resistance of the glove material can not be calculated in advance and has therefore to be checked prior to the application The exact break through time for substances has to be obtained from the manufacturer of the protective gloves and has to be observed when making a final choice. Personal hygiene is a key element of effective hand care. Gloves must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. Suitability and durability of glove type is dependent on usage. Important factors in the selection of gloves include: frequency and duration of contact, chemical resistance of glove material, glove thickness and dexterity Select gloves tested to a relevant standard (e.g. Europe EN 374, US F739, AS/NZS 2161.1 or national equivalent). When prolonged or frequently repeated contact may occur, a glove with a protection class of 5 or higher (breakthrough time greater than 240 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. When only brief contact is expected, a glove with a protection class of 3 or higher (breakthrough time greater than 60 minutes according to EN 374, AS/NZS 2161.10.1 or national equivalent) is recommended. Some glove polymer types are less affected by movement and this should be taken into account when considering gloves for long-term Hands/feet protection use Contaminated gloves should be replaced. As defined in ASTM F-739-96 in any application, gloves are rated as: Excellent when breakthrough time > 480 min Good when breakthrough time > 20 min Fair when breakthrough time < 20 min Poor when glove material degrades For general applications, gloves with a thickness typically greater than $0.35\,\mathrm{mm}$, are recommended. It should be emphasised that glove thickness is not necessarily a good predictor of glove resistance to a specific chemical, as the permeation efficiency of the glove will be dependent on the exact composition of the glove material. Therefore, glove selection should also be based on consideration of the task requirements and knowledge of breakthrough times. Glove thickness may also vary depending on the glove manufacturer, the glove type and the glove model. Therefore, the manufacturers' technical data should always be taken into account to ensure selection of the most appropriate glove for the task. Note: Depending on the activity being conducted, gloves of varying thickness may be required for specific tasks. For example: Thinner gloves (down to 0.1 mm or less) may be required where a high degree of manual dexterity is needed. However, these gloves are only likely to give short duration protection and would normally be just for single use applications, then disposed of. Thicker gloves (up to 3 mm or more) may be required where there is a mechanical (as well as a chemical) risk i.e. where there is abrasion or puncture potential Gloves
must only be worn on clean hands. After using gloves, hands should be washed and dried thoroughly. Application of a non-perfumed moisturiser is recommended. ▶ Wear chemical protective gloves, e.g. PVC. Wear safety footwear or safety gumboots, e.g. Rubber **Body protection** See Other protection below Overalls. ▶ P.V.C. apron. Other protection Barrier cream. ## Respiratory protection Type A Filter of sufficient capacity. (AS/NZS 1716 & 1715, EN 143:2000 & 149:2001, ANSI Z88 or national equivalent) Skin cleansing cream.Eve wash unit. Selection of the Class and Type of respirator will depend upon the level of breathing zone contaminant and the chemical nature of the contaminant. Protection Factors (defined as the ratio of contaminant outside and inside the mask) may also be important. | Required minimum protection factor | Maximum gas/vapour concentration present in air p.p.m. (by volume) | Half-face Respirator | Full-Face Respirator | |------------------------------------|--|----------------------|----------------------| | up to 10 | 1000 | A-AUS / Class1 | - | | up to 50 | 1000 | - | A-AUS / Class 1 | | up to 50 | 5000 | Airline * | - | | up to 100 | 5000 | - | A-2 | | up to 100 | 10000 | - | A-3 | | 100+ | | | Airline** | * - Continuous Flow ** - Continuous-flow or positive pressure demand A(All classes) = Organic vapours, B AUS or B1 = Acid gasses, B2 = Acid gas or hydrogen cyanide(HCN), B3 = Acid gas or hydrogen cyanide(HCN), E = Sulfur dioxide(SO2), G = Agricultural chemicals, K = Ammonia(NH3), Hg = Mercury, NO = Oxides of nitrogen, MB = Methyl bromide, AX = Low boiling point organic compounds(below 65 degC) - Cartridge respirators should never be used for emergency ingress or in areas of unknown vapour concentrations or oxygen content. - The wearer must be warned to leave the contaminated area immediately on detecting any odours through the respirator. The odour may indicate that the mask is not functioning properly, that the vapour concentration is too high, or that the mask is not properly fitted. Because of these limitations, only restricted use of cartridge respirators is considered appropriate. - Cartridge performance is affected by humidity. Cartridges should be changed after 2 hr of continuous use unless it is determined that the humidity is less than 75%, in which case, cartridges can be used for 4 hr. Used cartridges should be discarded daily, regardless of the length of time used ## **SECTION 9 PHYSICAL AND CHEMICAL PROPERTIES** ## Information on basic physical and chemical properties Appearance Liquid Page **7** of **12** Issue Date: 04/16/2019 Chemwatch: 69-6930 Version No: 5.1.1.1 Print Date: 04/16/2019 ## Cydectin Platinum Low Volume Pour-On for Cattle | Liquid | Relative density (Water = 1) | 1.13 | |---------------|--|---| | Not Available | Partition coefficient n-octanol / water | Not Available | | Not Available | Auto-ignition temperature (°C) | Not Available | | Not Available | Decomposition temperature | Not Available | | Not Available | Viscosity (cSt) | Not Available | | Not Available | Molecular weight (g/mol) | Not Applicable | | Not Available | Taste | Not Available | | Not Available | Explosive properties | Not Available | | Not Available | Oxidising properties | Not Available | | Not Available | Surface Tension (dyn/cm or mN/m) | Not Available | | Not Available | Volatile Component (%vol) | Not Available | | Not Available | Gas group | Not Available | | Not Available | pH as a solution (1%) | Not Available | | Not Available | VOC g/L | 850.8 | | | Not Available | Not Available Oxidising properties Surface Tension (dyn/cm or mN/m) Not Available Volatile Component (%vol) Not Available Gas group Not Available pH as a solution (1%) | ## **SECTION 10 STABILITY AND REACTIVITY** | Reactivity | See section 7 | |------------------------------------|--| | Chemical stability | Unstable in the presence of incompatible materials. Product is considered stable. Hazardous polymerisation will not occur. | | Possibility of hazardous reactions | See section 7 | | Conditions to avoid | See section 7 | | Incompatible materials | See section 7 | | Hazardous decomposition products | See section 5 | ## **SECTION 11 TOXICOLOGICAL INFORMATION** | Information | on | toxicological effects | | |-------------|----|-----------------------|--| | Information on toxicological | effects | |------------------------------|---| | Inhaled | The material is not thought to produce respiratory irritation (as classified by EC Directives using animal models). Nevertheless inhalation of vapours, fumes or aerosols, especially for prolonged periods, may produce respiratory discomfort and occasionally, distress. Inhalation of vapours or aerosols (mists, fumes), generated by the material during the course of normal handling, may be damaging to the health of the individual. Inhalation hazard is increased at higher temperatures. One case report describes kidney and liver damage in two people working in a closed room with paint containing diethylene glycol monobutyl ether and at the same time consuming large quantities of alcoholic beverages. It has as yet not been established whether the glycol ether and alcohol have synergistic effects but it is possible that oxidation and elimination of both substances probably involves alcohol dehydrogenases; competitive inhibition would be the result. | | Ingestion | Accidental ingestion of the material may be harmful; animal experiments indicate that ingestion of less than 150 gram may be fatal or may produce serious damage to the health of the individual. Cyanosis, rapid breathing and heart beat, low blood pressure, muscle tenderness and unconsciousness may follow ingestion of diethylene glycol monobutyl ether. Swallowing large or repeated doses may affect kidney function. | | Skin Contact | Skin contact with the material may be harmful; systemic effects may result following absorption. Evidence exists, or practical experience predicts, that the material either produces inflammation of the skin in a substantial number of individuals following direct contact, and/or produces significant inflammation when applied to the healthy intact skin of animals, for up to four hours, such inflammation being present twenty-four hours or more after the end of the exposure period. Skin irritation may also be present after prolonged or repeated exposure; this may result in a form of contact dermatitis (nonallergic). The dermatitis is often characterised by skin redness (erythema) and swelling (oedema) which may progress to blistering (vesiculation), scaling and thickening of the epidermis. At the microscopic level there may be intercellular oedema of the spongy layer of the skin (spongiosis) and intracellular oedema of the epidermis. The material may accentuate any pre-existing dermatitis condition Open cuts, abraded or irritated skin should not be exposed to this material Entry into the blood-stream through, for example, cuts, abrasions, puncture wounds or lesions, may produce systemic injury with harmful effects. Examine the skin prior to the use of the material and ensure that any external damage is suitably protected. There are indications that diethylene glycol monobutyl ether is absorbed through intact skin. Toxic effects only occur at very high doses. | | Еуе | Evidence exists, or practical experience predicts, that the material may cause
eye irritation in a substantial number of individuals and/or may produce significant ocular lesions which are present twenty-four hours or more after instillation into the eye(s) of experimental animals. Repeated or prolonged eye contact may cause inflammation characterised by temporary redness (similar to windburn) of the conjunctiva (conjunctivitis); temporary impairment of vision and/or other transient eye damage/ulceration may occur. | | Chronic | Limited evidence suggests that repeated or long-term occupational exposure may produce cumulative health effects involving organs or biochemical systems. There exists limited evidence that shows that skin contact with the material is capable either of inducing a sensitisation reaction in a significant number of individuals, and/or of producing positive response in experimental animals. Cyclic ethers, including tetrahydrofuran, furan and 1,4-dioxane, produce neoplasms and carcinomas in experimental animals, typically of the liver; other target organs include the adrenal gland, nasal cavity and gall-bladder. 1,4-Dioxane was a promoter in a two-stage skin carcinogenic study in mice. Results | death). Oxetanes are under investigation. of studies with cyclic ethers indicate that carcinogenicity is often species and sex dependent. Furan has been used to induce apoptosis (programmed cell Studies with some glycol ethers (principally the monoethylene glycols) and their esters indicate reproductive changes, testicular atrophy, infertility and Chemwatch: 69-6930 Page 8 of 12 Issue Date: 04/16/2019 Version No: 5.1.1.1 ## Cydectin Platinum Low Volume Pour-On for Cattle Print Date: 04/16/2019 kidney function changes. The metabolic acetic acid derivatives of glycol ethers (alkoxyacetic acids), not the ether itself, have been found to be the proximal reproductive toxin in animals. The potency of these metabolites decreases significantly as the chain length of the ether increases. Consequently glycol ethers with longer substituents (e.g diethylene glycols, triethylene glycols) have not generally been associated with reproductive effects. One of the most sensitive indicators of toxic effects observed from many of the glycol ethers is an increase in the erythrocytic osmotic fragility in rats Which produces haemolytic anaemia). This appears to be related to the development of haemoglobinuria (blood in the urine) at higher exposure levels or as a result of chronic exposure. Glycol ethers based on propylene oxides, propylene glycol ethers, dipropylene glycol ethers and tripropylene glycol ethers are mainly available, commercially, as alpha-isomers (because of thermodynamic considerations); these are incapable of forming alkoxyacetic or alkoxypropionic acids as metabolites and therefore do not produce erythrocyte fragility unless contaminated by ethylene glycol ethers or to a significant degree by the beta-isomer . beta-Isomers are able to form the alkoxypropionic acids and these are linked to teratogenic effects (and possibly haemolytic effects). | TOXICITY | IRRITATION | | |--|--|--| | Not Available | Not Available | | | TOXICITY | IRRITATION | | | Oral (rat) LD50: 180 mg/kg ^[2] | Not Available | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: >2000 mg/kg ^[2] | Eye (rabbit): slight irritant * | | | Oral (rat) LD50: 106 mg/kg ^[2] | Skin (rabbit): non-irritant * | | | TOXICITY | IRRITATION | | | Dermal (rabbit) LD50: >2000 mg/kg ^[2] | Eye (rabbit): 20 mg/24h moderate | | | Oral (rat) LD50: =4500 mg/kg ^[2] | Eye (rabbit): 5 mg - SEVERE | | | | Not Available TOXICITY Oral (rat) LD50: 180 mg/kg ^[2] TOXICITY Dermal (rabbit) LD50: >2000 mg/kg ^[2] Oral (rat) LD50: 106 mg/kg ^[2] TOXICITY Dermal (rabbit) LD50: >2000 mg/kg ^[2] | Not Available Not Available TOXICITY IRRITATION Oral (rat) LD50: $180 \text{ mg/kg}^{[2]}$ Not Available TOXICITY IRRITATION Dermal (rabbit) LD50: $>2000 \text{ mg/kg}^{[2]}$ Eye (rabbit): slight irritant * Oral (rat) LD50: $106 \text{ mg/kg}^{[2]}$ Skin (rabbit): non-irritant * TOXICITY IRRITATION Dermal (rabbit) LD50: $>2000 \text{ mg/kg}^{[2]}$ Eye (rabbit): $20 \text{ mg/24h moderate}$ | Leaend: 1. Value obtained from Europe ECHA Registered Substances - Acute toxicity 2.* Value obtained from manufacturer's SDS. Unless otherwise specified data extracted from RTECS - Register of Toxic Effect of chemical Substances #### LEVAMISOLE BASE for tetramisole hydrochloride Intravenous (rabbit) LD50: 15-20 mg/kg Flaccid paralysis, convulsions, dermatitis after systemic exposure recorded. Non-mutagenic in mammals. Technical avermectin exhibits high mammalian acute toxicity. It is not considered to be mutagenic and does not sensitise skin. It is not readily absorbed by mammals and the majority of the residue is excreted in the faeces within 2 days. The 24-month rat chronic feeding/ oncogenicity study and 94-week mouse chronic toxicity oncogenicity study were negative for oncogenic potential. The results of a series of developmental toxicity studies (rat, rabbit, mouse) have been evaluated and showed that avermectin B1 produces developmental toxicity (cleft palate) in the CF1 mouse. Toxicology data were also evaluated for the delta-8,9-isomer of avermectin B1 which is a plant photodegradate that can range between 5 and 20 percent of the residue on/in cottonseed. This isomer possesses avermectin-like toxicological activity. It was concluded that the delta 8,9-isomer also produces developmental toxicity (cleft palate) in mice, but not in rats. In addition to avermectin and its delta 8,9-isomer, toxicology data were also evaluated for the "polar degradates" of avermectin, which constitute a large percentage (up to 70%) of the total residue on cottonseed. Review of the toxicology data indicated that these polar degradates do not possess avermectin-like toxicological activity and for this reason need not be included in the tolerance expression for residues in/on cottonseed. Abamectin (a mixture of avermectin isomers) is a reproductive toxin in laboratory animals at doses which are acutely toxic to the mother. In development toxicity studies with abamectin, cleft palates were seen in mice and rabbits and clubbing of the forepaws was seen in rabbits. The no-observed-adverseeffect-level (NOAEL) for maternal and developmental toxicity in rabbits was 1 mg/kg/day. In CF-1 mice, a strain recognised to be particularly sensitive to avermectins, the NOAEL for maternal toxicity was 0.05 mg/kg/day and the NOAEL for malformations was 0.2 mg/kg/day. Studies show that the sensitivity of a subpopulation of CF-1 mice to avermectins is due to the absence of a transmembrane P-glycoprotein, a significant component of the blood-brain interface that normally acts as a non-selective protective barrier in a wide range of species including humans. CF-1 mice are therefore an unlikely candidate for assessing human risk. No evidence of developmental toxicity was seen in oral studies in rats in the absence of maternal toxicity (NOAEL = 1.6 mg/kg/day). In a rat multigenerational reproduction study, pup toxicity and deaths were seen at 0.4 mg/kg/day (NOAEL = 0.12 mg/kg/day). Neonatal rats are not an appropriate model for assessing human risk in humans because (a) rat milk has a greater fat ## MOXIDECTIN content than human breast milk and abamectin concentrates in fat; (b) on a weight basis, the neonatal rat consumes significantly greater quantities of milk than the newborn human and(c) the blood brain barrier in rodents is formed post-natally (as evidenced by low P-glycoprotein levels) while in humans this membrane is formed pre-natally. Ivermectin, a close structural analogue, has been used extensively in the treatment of human onchocerciasis at an oral therapeutic dose of 0.2 mg/kg, without serious drug-related effects. Despite its wide usage in animals and humans, ivermectin does dot appear to produce birth defects. Abamectin is non-mutagenic in the Ames test and the micronucleus test. Dietary carcinogenicity studies in mice and rats showed negative results. In a 14-week oral study in monkeys no effects were seen at 0.2, 0.5 or 1.0 mg/kg/day; emesis was seen at 2.0 mg/kg/day; delayed pupillary obstruction at 6 and 8 mg/kg/day and mydriasis at 12 mg/kg/day. In chronic oral toxicity, abamectin produced decreased body weight gain in mice (no-observed-adverse-effect-level (NOAEL) = 1.5 mg/kg/day); tremors in rats (NOAEL = 1.5 mg/kg/day), weight loss, tremors, mydriasis, liver and gall bladder changes and death in dogs (NOAEL = 0.25 mg/kg/day); and emesis, mydriasis and sedation in monkeys (NOAL = 1 mg/kg/day). May produce developmental toxicity in rat offspring at maternally toxic doses. This does not occur in rabbits. ** Cyanamid The ADI for Moxidectin is set at 0.01mg/kg/day. The corresponding NOEL is set at 1mg/kg/day. ADI means Acceptable Daily Intake and NOEL means No-observable-effect-level. In rats given oral doses of moxidectin, decreased activity, prostration, tremors, chromodacryorrhea, decreased respiration, diarrhoea, hypersensitivity to touch and sound, and epistaxis occurred. Congestion of the liver, kidneys and lungs were observed in animals that died, but animals which were sacrificed at the end of the 14-day observation period showed no abnormalities.
No overt signs of toxicity were noted in rabbits treated dermally with moxidectin. The material may produce severe irritation to the eye causing pronounced inflammation. Repeated or prolonged exposure to irritants may produce conjunctivitis For diethylene glycol monoalkyl ethers and their acetates: This category includes diethylene glycol ethyl ether (DGEE), diethylene glycol propyl ether (DGPE) diethylene glycol butyl ether (DGBE) and diethylene glycol hexyl ether (DGHE) and their acetates ### DIETHYLENE GLYCOL MONOBUTYL ETHER Acute toxicity: There are adequate oral, inhalation and/or dermal toxicity studies on the category members. Oral LD50 values in rats for all category members are all > 3000 mg/kg bw, with values generally decreasing with increasing molecular weight. Four to eight hour acute inhalation toxicity studies were conducted for all category members except DGPE in rats at the highest vapour concentrations achievable. No lethality was observed for any of these materials under these conditions. Dermal LD50 values in rabbits range from 2000 mg/kg bw (DGHE) to 15000 mg/kg bw (DGEEA). Signs of acute toxicity in rodents are consistent with non-specific CNS depression typical of organic solvents in general. All category members are slightly irritating to skin and slightly to moderately irritating to eyes (with the exception of DGHE, which is highly irritating to eyes). Sensitisation tests with DGEE, DGEEA, DGPE, DGBE and DGBEA in animals and/or humans were negative. Chemwatch: 69-6930 Page 9 of 12 Issue Date: 04/16/2019 Version No: 5.1.1.1 Print Date: 04/16/2019 ## Cydectin Platinum Low Volume Pour-On for Cattle Repeat dose toxicity: Valid oral studies conducted using DGEE, DGPE, DGBEA, DGHE and the supporting chemical DGBE ranged in duration from 30 days to 2 years. Effects predominantly included kidney and liver toxicity, absolute and/or relative changes in organ weights, and some changes in haematological parameters. All effects were seen at doses greater than 800-1000 mg/kg bw/day from oral or dermal studies; no systemic effects were observed in inhalation studies with less than continuous exposure regimens. Mutagenicity: DGEE, DGEEA, DGBE, DGBEA and DGHE generally tested negative for mutagenicity in *S. typhimurium* strains TA98, TA100, TA1535, TA1537 and TA1538 and DGBEA tested negative in E. coli WP2uvrA, with and without metabolic activation. *In vitro* cytogenicity and sister chromatid exchange assays with DGBE and DGHE in Chinese Hamster Ovary Cells with and without metabolic activation and *in vivo* micronucleus or cytogenicity tests with DGBE, DGBE and DGHE in rats and mice were negative, indicating that these diethylene glycol ethers are not likely to be genotoxic. Reproductive and developmental toxicity: Reliable reproductive toxicity studies on DGEE, DGBE and DGHE show no effect on fertility at the highest oral doses tested (4,400 mg/kg/day for DGBE in the mouse and 1,000 mg/kg/day for DGBE and DGHE in the rat). The dermal NOAEL for reproductive toxicity in rats administered DGBE also was the highest dose tested (2,000 mg/kg/day). Although decreased sperm motility was noted in F1 mice treated with 4,400 mg/kg/day DGEE in drinking water for 14 weeks, sperm concentrations and morphology, histopathology of the testes and fertility were not affected. Results of the majority of adequate repeated dose toxicity studies in which reproductive organs were examined indicate that DGPE and DGBEA do not cause toxicity to reproductive organs (including the testes). Test material-related testicular toxicity was not noted in the majority of the studies with DGEE or DGEEA. Results of the developmental toxicity studies conducted with DGEE, DGBE and DGHE are almost exclusively negative. In these studies, effects on the foetus are generally not observed (even at concentrations that produced maternal toxicity). Exposure to 102 ppm (560 mg/m3) DGEE by inhalation (maximal achievable vapour concentration) or 1385 mg/kg/day DGEE by the dermal route during gestation did not cause maternal or developmental toxicity in the rat. Maternal toxicity and teratogenesis were not observed in rabbits receiving up to 1000 mg/kg/day DGBE by the dermal route during gestation; however a transient decrease in body weight was observed, which reversed by Day 21 In the mouse, the only concentration of DGEE tested (3500 mg/kg/day by gavage) caused maternal, but no foetal toxicity. Also, whereas oral administration of 2050 mg/kg/day DGBE (gavage) to the mouse and 1000 mg/kg/day DGHE (dietary) caused maternal toxicity, these doses had no effect on the developing foetus | Acute Toxicity | ✓ | Carcinogenicity | × | |-----------------------------------|---|--------------------------|---| | Skin Irritation/Corrosion | ✓ | Reproductivity | × | | Serious Eye Damage/Irritation | ✓ | STOT - Single Exposure | × | | Respiratory or Skin sensitisation | × | STOT - Repeated Exposure | × | | Mutagenicity | × | Aspiration Hazard | × | Legend: X - Data either not available or does not fill the criteria for classification Data available to make classification #### **SECTION 12 ECOLOGICAL INFORMATION** #### Toxicity | Cydectin Platinum Low
Volume Pour-On for Cattle | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | |--|------------------|--------------------|-------------------------------|------------------|------------------| | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | levamisole base | LC50 | 96 | Fish | 8.038mg/L | 3 | | EC50 | EC50 | 96 | Algae or other aquatic plants | 17.231mg/L | 3 | | moxidectin N | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | Not
Available | Not Available | Not Available | Not
Available | Not
Available | | | ENDPOINT | TEST DURATION (HR) | SPECIES | VALUE | SOURCE | | | LC50 | 96 | Fish | 1-300mg/L | 2 | | diethylene glycol monobutyl
ether | EC50 | 48 | Crustacea | 4-950mg/L | 2 | | | EC50 | 72 | Algae or other aquatic plants | 1-101mg/L | 2 | | | NOEC | 96 | Algae or other aquatic plants | >=100mg/L | 1 | Legend: Extracted from 1. IUCLID Toxicity Data 2. Europe ECHA Registered Substances - Ecotoxicological Information - Aquatic Toxicity 3. EPIWIN Suite V3.12 (QSAR) - Aquatic Toxicity Data (Estimated) 4. US EPA, Ecotox database - Aquatic Toxicity Data 5. ECETOC Aquatic Hazard Assessment Data 6. NITE (Japan) - Bioconcentration Data 7. METI (Japan) - Bioconcentration Data 8. Vendor Data Harmful to aquatic organisms, may cause long-term adverse effects in the aquatic environment. **DO NOT** discharge into sewer or waterways. ## Persistence and degradability | Ingredient | Persistence: Water/Soil | Persistence: Air | |-----------------------------------|-------------------------|------------------| | levamisole base | HIGH | HIGH | | diethylene glycol monobutyl ether | LOW | LOW | ## **Bioaccumulative potential** | Ingredient | Bioaccumulation | |-----------------------------------|---------------------| | levamisole base | LOW (LogKOW = 1.84) | | diethylene glycol monobutyl ether | LOW (BCF = 0.46) | Page 10 of 12 Cydectin Platinum Low Volume Pour-On for Cattle Issue Date: **04/16/2019**Print Date: **04/16/2019** | Ingredient | Mobility | |-----------------------------------|------------------| | levamisole base | LOW (KOC = 8652) | | diethylene glycol monobutyl ether | LOW (KOC = 10) | ## **SECTION 13 DISPOSAL CONSIDERATIONS** #### Waste treatment methods - ► Containers may still present a chemical hazard/danger when empty - ▶ Return to supplier for reuse/ recycling if possible. #### Otherwise: - If container can not be cleaned sufficiently well to ensure that residuals do not remain or if the container cannot be used to store the same product, then puncture containers, to prevent re-use, and bury at an authorised landfill. - ▶ Where possible retain label warnings and SDS and observe all notices pertaining to the product. Legislation addressing waste disposal requirements may differ by country, state and/ or territory. Each user must refer to laws operating in their area. In some areas, certain wastes must be tracked. A Hierarchy of Controls seems to be common - the user should investigate: - Reduction - ► Reuse - Product / Packaging disposal - Recycling - Disposal (if all else fails) This material may be recycled if unused, or if it has not been contaminated so as to make it unsuitable for its intended use. If it has been contaminated, it may be possible to reclaim the product by filtration, distillation or some other means. Shelf life considerations should also be applied in making decisions of this type. Note that properties of a material may change in use, and recycling or reuse may not always be appropriate. - DO NOT allow wash water from cleaning or process equipment to enter drains - It may be necessary to collect all wash water for treatment before disposal. - ▶ In all cases disposal to sewer may be subject to local laws and regulations and these should be considered first. - Where in doubt contact the responsible authority. - ▶ Recycle wherever possible or consult manufacturer for recycling options. - Consult State Land Waste Authority for disposal. - Bury or incinerate residue at an approved site. - ▶ Recycle containers if possible, or dispose of in an authorised landfill ## **SECTION 14 TRANSPORT INFORMATION** ## **Labels Required** | | Marine Pollutant | NO
Not Applicable | |--|------------------|----------------------| | | HAZCHEM | Not Applicable | Land transport (ADG): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Air transport (ICAO-IATA / DGR): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Sea transport (IMDG-Code / GGVSee): NOT REGULATED FOR TRANSPORT OF DANGEROUS GOODS Transport in bulk according to Annex II of MARPOL and the IBC code Not Applicable ## **SECTION 15 REGULATORY INFORMATION** ## Safety,
health and environmental regulations / legislation specific for the substance or mixture ## LEVAMISOLE BASE (14769-73-4) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Index Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule $\ensuremath{\mathtt{5}}$ Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code) United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English) ## MOXIDECTIN(113507-06-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS Australia Dangerous Goods Code (ADG Code) - Dangerous Goods List Australia Dangerous Goods Code (ADG Code) - List of Emergency Action Codes Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Index Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 4 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 6 Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule 7 International Air Transport Association (IATA) Dangerous Goods Regulations International Maritime Dangerous Goods Requirements (IMDG Code) United Nations Recommendations on the Transport of Dangerous Goods Model Regulations (English) DIETHYLENE GLYCOL MONOBUTYL ETHER(112-34-5) IS FOUND ON THE FOLLOWING REGULATORY LISTS Version No: 5.1.1.1 ## Cydectin Platinum Low Volume Pour-On for Cattle Issue Date: 04/16/2019 Print Date: 04/16/2019 Australia Hazardous Chemical Information System (HCIS) - Hazardous Chemicals Australia Inventory of Chemical Substances (AICS) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix E (Part 2) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Appendix F (Part 3) Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Index Australia Standard for the Uniform Scheduling of Medicines and Poisons (SUSMP) - Schedule GESAMP/EHS Composite List - GESAMP Hazard Profiles IMO IBC Code Chapter 17: Summary of minimum requirements IMO MARPOL (Annex II) - List of Noxious Liquid Substances Carried in Bulk IMO MARPOL 73/78 (Annex II) - List of Other Liquid Substances IMO Provisional Categorization of Liquid Substances - List 2: Pollutant only mixtures containing at least 99% by weight of components already assessed by IMO ## **National Inventory Status** | National Inventory | Status | | |-------------------------------|---|--| | Australia - AICS | No (moxidectin) | | | Canada - DSL | No (moxidectin) | | | Canada - NDSL | No (moxidectin; diethylene glycol monobutyl ether; levamisole base) | | | China - IECSC | No (moxidectin) | | | Europe - EINEC / ELINCS / NLP | No (moxidectin) | | | Japan - ENCS | No (moxidectin) | | | Korea - KECI | No (moxidectin) | | | New Zealand - NZIoC | Yes | | | Philippines - PICCS | No (moxidectin) | | | USA - TSCA | No (moxidectin; levamisole base) | | | Taiwan - TCSI | Yes | | | Mexico - INSQ | No (moxidectin) | | | Vietnam - NCI | No (moxidectin) | | | Russia - ARIPS | No (moxidectin; levamisole base) | | | Thailand - TECI | iland - TECI Yes | | | Legend: | Yes = All declared ingredients are on the inventory No = Not determined or one or more ingredients are not on the inventory and are not exempt from listing(see specific ingredients in brackets) | | ## **SECTION 16 OTHER INFORMATION** | Revision Date | 04/16/2019 | |---------------|------------| | Initial Date | 10/26/2016 | ## **SDS Version Summary** | Version | Issue Date | Sections Updated | |---------|------------|-------------------| | 3.1.1.1 | 10/31/2016 | Ingredients | | 5.1.1.1 | 04/16/2019 | Ingredients, Name | Classification of the preparation and its individual components has drawn on official and authoritative sources as well as independent review by the Chemwatch Classification committee using available literature references. The SDS is a Hazard Communication tool and should be used to assist in the Risk Assessment. Many factors determine whether the reported Hazards are Risks in the workplace or other settings. Risks may be determined by reference to Exposures Scenarios. Scale of use, frequency of use and current or available engineering controls must be considered. ## **Definitions and abbreviations** PC-TWA: Permissible Concentration-Time Weighted Average PC-STEL: Permissible Concentration-Short Term Exposure Limit IARC: International Agency for Research on Cancer ACGIH: American Conference of Governmental Industrial Hygienists STEL: Short Term Exposure Limit TEEL: Temporary Emergency Exposure Limit. IDLH: Immediately Dangerous to Life or Health Concentrations OSF: Odour Safety Factor NOAEL :No Observed Adverse Effect Level LOAEL: Lowest Observed Adverse Effect Level TLV: Threshold Limit Value LOD: Limit Of Detection OTV: Odour Threshold Value BCF: BioConcentration Factors BEI: Biological Exposure Index This document is copyright. Apart from any fair dealing for the purposes of private study, research, review or criticism, as permitted under the Copyright Act, no part may be reproduced by any process without written permission from CHEMWATCH. Chemwatch: 69-6930 Page **12** of **12** Issue Date: 04/16/2019 Version No: **5.1.1.1** Print Date: 04/16/2019 Cydectin Platinum Low Volume Pour-On for Cattle TEL (+61 3) 9572 4700.